Significant progress in theoretical and computational techniques for predicting stable crystal structures has recently begun to stimulate targeted synthesis of such predicted structures. Using a global space-group optimization (GSGO) approach that locates ground-state structures and stable stoichiometries from first-principles energy functionals by objectively starting from randomly selected lattice vectors and random atomic positions, we predict the first alkali diazenide compound NanN2, manifesting homopolar N–N bonds. The previously predicted Na3N structure manifests only heteropolar Na–N bonds and has positive formation enthalpy. It was calculated based on local Hartree–Fock relaxation of a fixed-structure type (Li3P-type) found by searching an electrostatic point-ion model. Synthesis attempts of this positive ΔH compound using activated nitrogen yielded another structure (anti-ReO3-type). The currently predicted (negative formation enthalpy) diazenide Na2N2 completes the series of previously known BaN2 and SrN2 diazenides where the metal sublattice transfers charge into the empty N2Πg orbital. This points to a new class of alkali nitrides with fundamentally different bonding, i.e., homopolar rather than heteropolar bonds and, at the same time, illustrates some of the crucial subtleties and pitfalls involved in structure predictions versus planned synthesis. Attempts at synthesis of the stable Na2N2 predicted here will be interesting.

1.
2.
D.
Fischer
and
M.
Jansen
,
Angew. Chem., Int. Ed.
41
,
1755
(
2002
).
3.
G. V.
Vajenine
,
Inorg. Chem.
46
,
5146
(
2007
).
5.
S. M.
Woodley
and
R.
Catlow
,
Nature Mater.
7
,
937
(
2008
).
7.
K. D. M.
Harris
and
P. P.
Edwards
,
Turning Points in Solid-State, Materials and Surface Science
(
RSC Publishing
,
Cambridge, UK
,
2007
).
8.
E.
Wigner
and
F.
Seitz
,
Phys. Rev.
43
,
804
(
1933
).
9.
J.
Ihm
,
A.
Zunger
, and
M. L.
Cohen
,
J. Phys. C
12
,
4409
(
1979
).
10.
S.
Wei
,
H.
Krakauer
, and
M.
Weinert
,
Phys. Rev. B
32
,
7792
(
1985
).
11.
S.
Curtarolo
,
D.
Morgan
,
K.
Persson
,
J.
Rodgers
, and
G.
Ceder
,
Phys. Rev. Lett.
91
,
135503
(
2003
).
12.
A.
Zunger
and
M. L.
Cohen
,
Phys. Rev. Lett.
41
,
53
(
1978
).
13.
M. T.
Yin
and
M. L.
Cohen
,
Phys. Rev. B
26
,
5668
(
1982
).
14.
S.
Froyen
and
M. L.
Cohen
,
Phys. Rev. B
28
,
3258
(
1983
).
15.
J.
Hafner
,
C.
Wolverton
, and
G.
Ceder
,
MRS Bull.
31
,
659
(
2006
).
16.
G.
Kresse
and
J.
Furthműller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
17.
D. A.
Coley
,
An Introduction to Genetic Algorithms for Scientists and Engineers
(
World Scientific
,
Singapore
,
1999
).
18.
S.
Kirkpatrick
,
J. Stat. Phys.
34
,
975
(
1984
).
19.
G.
Trimarchi
,
A. J.
Freeman
, and
A.
Zunger
,
Phys. Rev. B
80
,
092101
(
2009
).
20.
Total energies were calculated from density-functional theory, using a plane-wave basis set. We used the augmented-wave pseudopotentials, and the LDA exchange-correlation functional of Perdew and Zunger (Ref. 33) (or the Perdew–Burke–Ernzerhof exchange-correlation functional) (Ref. 34). Basis set energy-cutoff was set to be 500 eV. The reciprocal space was sampled using grids with densities of 2π×0.051 and 2π×0.034Å1 for relaxation and static calculation, respectively. Overall convergence of total energy is 5meV/atom.
21.
D.
Fischer
,
Ž.
Čančarevič
,
J. C.
Schön
, and
M.
Jansen
, Selected research reports: First synthesis of Na3N based on rational synthesis planning concepts.
22.
D. M.
Deaven
and
K. M.
Ho
,
Phys. Rev. Lett.
75
,
288
(
1995
).
23.
A. R.
Oganov
and
C. W.
Glass
,
J. Chem. Phys.
124
,
244704
(
2006
).
24.
The structure search was performed for structures with up to 20 atoms per unit cell. The population size was set to 16 and the two worst individuals were replaced by offspring at each generation. The rate of crossover versus mutation was set to 0.7. A minimum of two independent evolutionary runs with 30 or more generations were performed for each global space-group optimization search.
25.
W.
Zhu
,
J.
Xiao
, and
H.
Xiao
,
J. Phys. Chem. B
110
,
9856
(
2006
).
26.
P.
Villard
and
L. D.
Calvert
,
Pearson’s Handbook of Crystallographic Data for Intermetallic Phases
(
ASM International
,
Materials Park, OH
,
1991
).
27.
We are uncertain about the ability of LDA/GGA to produce accurate absolute ΔH values because of LDA/GGA errors (e.g., the calculated ΔH of BaN2 is −250 kJ/mol in LDA and −152 kJ/mol in GGA, and was measured to be −172 kJ/mol) (Ref. 32), but the structure search was guided well by LDA.
28.
G. V.
Vajenine
,
G.
Auffermann
,
Y.
Prots
,
W.
Schnelle
,
R. K.
Kremer
,
A.
Simon
, and
R.
Kniep
,
Inorg. Chem.
40
,
4866
(
2001
).
29.
G.
Auffermann
,
Y.
Prots
, and
R.
Kniep
,
Angew. Chem., Int. Ed.
40
,
547
(
2001
).
30.
A.
Simon
,
Z. Anorg. Allg. Chem.
395
,
301
(
1973
).
31.
T. B.
Massalski
,
J. L.
Murray
,
L. H.
Bennett
, and
H.
Baker
,
Binary Alloy Phase Diagrams
(
American Society for Metals
,
Metals Park, OH
,
1986
).
32.
D. D.
Wagman
,
W. H.
Evans
,
V. B.
Parker
,
R. H.
Schumm
,
I.
Halow
,
S. M.
Bailey
,
K. L.
Churney
, and
R. L.
Nuttall
,
J. Phys. Chem. Ref. Data Suppl.
11
,
284
, 285, and 295 (
1982
).
33.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
34.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
You do not currently have access to this content.