The formal underpinning is derived for the computational determination of electron photodetachment and photoionization total integral cross sections for molecules in which the residual species, which can be a neutral or an ion, has states that are strongly coupled by conical intersections. The theory takes full account of the requisite antisymmetry of all the electrons and the potential nonorthogonality of the orbital for the scattering electron to the occupied molecular orbitals of the residual. The breakdown of the Born–Oppenheimer approximation requires significant modifications to the standard adiabatic state theory. The developed theory builds on ideas from theories of low-energy electron scattering, in which the scattered electron is described by an orbital taken as channel dependent, but independent of nuclear coordinates. The derived computational approach is based on the accurate description of the vibronic levels of the residual species using the nonadiabatic vibronic coupling theory of Köppel, Domcke, and Cederbaum. The electron scattering problem is solved using the complex rotation L2 method of Han and Reinhardt. This approach has the advantage that both Coulomb and free electron boundary conditions can be treated in the same approach.

1.
A.
Stolow
and
J. G.
Underwood
,
Adv. Chem. Phys.
139
,
497
(
2008
).
2.
P. G.
Wenthold
and
W. C.
Lineberger
,
Acc. Chem. Res.
32
,
597
(
1999
).
3.
D. M.
Neumark
,
J. Phys. Chem. A
112
,
13287
(
2008
).
4.
Y.
Arasaki
,
K.
Takatsuka
,
K.
Wang
, and
V.
McKoy
,
J. Chem. Phys.
132
,
124307
(
2010
).
5.
H. R.
Hudock
,
B. G.
Levine
,
A. L.
Thompson
,
H.
Satzger
,
D.
Townsend
,
N.
Gador
,
S.
Ullrich
,
A.
Stolow
, and
T. J.
Martínez
,
J. Phys. Chem. A
111
,
8500
(
2007
).
6.
K. J.
Reed
,
A. H.
Zimmerman
,
H. C.
Andersen
, and
J. I.
Brauman
,
J. Chem. Phys.
64
,
1368
(
1976
).
7.
R. R.
Lucchese
,
G.
Raseev
, and
V.
McKoy
,
Phys. Rev. A
25
,
2572
(
1982
).
8.
G.
Bandarage
and
R. R.
Lucchese
,
Phys. Rev. A
47
,
1989
(
1993
).
9.
M. A.
Morrison
and
W.
Sun
, in
Computational Methods for Electron-Molecule Collisions
, edited by
W. M.
Huo
and
F. A.
Gianturco
(
Plenum
,
New York
,
1995
), p.
131
.
10.
C. M.
Oana
and
A. I.
Krylov
,
J. Chem. Phys.
131
,
124114
(
2009
).
11.
C. A.
Taatjes
,
S. J.
Klippenstein
,
N.
Hansen
,
J. A.
Miller
,
T. A.
Cool
,
J.
Wang
,
M. E.
Law
, and
P. R.
Westmoreland
,
Phys. Chem. Chem. Phys.
7
,
806
(
2005
).
12.
C. M.
Oana
and
A. I.
Krylov
,
J. Chem. Phys.
127
,
234106
(
2007
).
13.
B. T.
Pickup
and
O.
Goscinski
,
Mol. Phys.
26
,
1013
(
1973
).
14.
B. T.
Pickup
,
Chem. Phys.
19
,
193
(
1977
).
15.
I. G.
Kaplan
,
B.
Barbiellini
, and
A.
Bansil
,
Phys. Rev. B
68
,
235104
(
2003
).
16.
S.
Patchkovskii
,
Z.
Zhao
,
T.
Brabec
, and
D. M.
Villeneuve
,
Phys. Rev. Lett.
97
,
123003
(
2006
).
17.
N. F.
Lane
,
Rev. Mod. Phys.
52
,
29
(
1980
).
18.
W.
Domcke
,
L. S.
Cederbaum
, and
F.
Kaspar
,
J. Phys. B
12
,
L359
(
1979
).
19.
R. R.
Lucchese
,
D. K.
Watson
, and
V.
McKoy
,
Phys. Rev. A
22
,
421
(
1980
).
20.
S. N.
Dixit
and
V.
McKoy
,
J. Chem. Phys.
82
,
3546
(
1985
).
21.
R. R.
Lucchese
,
K.
Takatsuka
, and
V.
McKoy
,
Phys. Rep.
131
,
147
(
1986
).
22.
K.
Wang
and
V.
McKoy
,
J. Chem. Phys.
95
,
4977
(
1991
).
23.
K. H.
Wang
and
V.
McKoy
,
Annu. Rev. Phys. Chem.
46
,
275
(
1995
).
24.
T. N.
Rescigno
and
V.
McKoy
,
Phys. Rev. A
12
,
522
(
1975
).
25.
S.
Han
and
W. P.
Reinhardt
,
J. Phys. B
28
,
3347
(
1995
).
26.
W. P.
Reinhardt
and
S.
Han
,
Int. J. Quantum Chem.
57
,
327
(
1996
).
27.
T. M.
Rescigno
,
B. H.
Lengsfield
 III
, and
C. W.
McCurdy
, in
Modern Electronic Structure Theory
, edited by
D. R.
Yarkony
(
World Scientific
,
Singapore
,
1995
), Vol.
2
, p.
501
.
28.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
,
Adv. Chem. Phys.
57
,
59
(
1984
).
29.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
, in
Conical Intersections
, edited by
W.
Domcke
,
H.
Köppel
, and
D. R.
Yarkony
(
World Scientific
,
River Edge, NJ
,
2004
), Vol.
15
, p.
323
.
30.
T.
Ichino
,
A. J.
Gianola
,
W. C.
Lineberger
, and
J. F.
Stanton
,
J. Chem. Phys.
125
,
084312
(
2006
).
31.
B. N.
Papas
,
M. S.
Schuurman
, and
D. R.
Yarkony
,
J. Chem. Phys.
129
,
124104
(
2008
).
32.
J. J.
Dillon
and
D. R.
Yarkony
,
J. Chem. Phys.
130
,
154312
(
2009
).
33.
H.
Feng
,
W.
Sun
,
M. A.
Morrison
, and
A. N.
Feldt
,
J. Phys. B
42
,
175201
(
2009
).
34.
B. H.
Lengsfield
 III
and
D. R.
Yarkony
, in
State-Selected and State-to-State Ion-Molecule Reaction Dynamics. Part 2: Theory
, edited by
M.
Baer
and
C. -Y.
Ng
(
Wiley
,
New York
,
1992
), Vol.
82
, p.
1
.
35.
H. C.
Longuet-Higgins
,
Adv. Spectrosc. (N.Y.)
2
,
429
(
1961
).
36.
Y.
Yamaguchi
,
Y.
Osamura
,
J. D.
Goddard
, and
H. F.
Schaefer
,
A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory
(
Oxford University
,
Oxford
,
1994
).
37.
E.
Merzbacher
,
Quantum Mechanics
, 3rd ed. (
Wiley
,
New York
,
1998
).
38.
W. P.
Reinhardt
,
Annu. Rev. Phys. Chem.
33
,
223
(
1982
).
39.
B.
Junker
, in
Advances in Atomic and Molecular Physics
, edited by
D.
Bates
and
B.
Bederson
(
Academic
,
New York
,
1982
), Vol.
18
, p.
207
.
40.
Y. K.
Ho
,
Phys. Rep.
99
,
1
(
1983
).
41.
M. S.
Schuurman
and
D. R.
Yarkony
,
J. Chem. Phys.
128
,
044119
(
2008
).
42.
T. N.
Rescigno
,
B. H.
Lengsfield
 III
, and
A. E.
Orel
,
J. Chem. Phys.
99
,
5097
(
1993
).
43.
C.
Winstead
and
V.
McKoy
, in
Modern Electronic Structure Theory
, edited by
D. R.
Yarkony
(
World Scientific
,
Singapore
,
1995
), Vol.
2
, p.
1375
.
You do not currently have access to this content.