The reactivity of naphthyl cations with benzene is investigated in a joint experimental and theoretical approach. Experiments are performed by using guided ion beam tandem mass spectrometers equipped with electron impact or atmospheric pressure chemical ion sources to generate C10H7+ with different amounts of internal excitation. Under single collision conditions, C–C coupling reactions leading to hydrocarbon growth are observed. The most abundant ionic products are C16H13+, C16Hn+ (with n=1012), and C15H10+. From pressure-dependent measurements, absolute cross sections of 1.0±0.3 and 2±0.6Å2 (at a collision energy of about 0.2 eV in the center of mass frame) are derived for channels leading to the formation of C16H12+ and C15H10+ ions, respectively. From cross section values a phenomenological total rate constant k=(5.8±1.9)×1011cm3s1 at an average collision energy of about 0.27 eV can be estimated for the process C10H7++C6H6all products. The energy behavior of the reactive cross sections, as well as further experiments performed using partial isotopic labeling of reagents, support the idea that the reaction proceeds via a long lived association product, presumably the covalently bound protonated phenylnaphthalene, from which lighter species are generated by elimination of neutral fragments (H, H2, CH3). A major signal relevant to the fragmentation of the initial adduct C16H13+ belongs to C15H10+. Since it is not obvious how CH3 loss from C16H13+ can take place to form the C15H10+ radical cation, a theoretical investigation focuses on possible unimolecular transformations apt to produce it. Naphthylium can act as an electrophile and add to the π system of benzene, leading to a barrierless formation of the ionic adduct with an exothermicity of about 53kcalmol1. From this structure, an intramolecular electrophilic addition followed by H shifts and ring opening steps leads to an overall exothermic loss (7.1kcalmol1 with respect to reagents) of the methyl radical from that part of the system which comes from benzene. Methyl loss can take place also from the “naphthyl” part, though via an endoergic route. Experimental and theoretical results show that an ionic route is viable for the growth of polycyclic aromatic species by association of smaller building blocks (naphthyl and phenyl rings) and this may be of particular relevance for understanding the formation of large molecules in ionized gases.

1.
S.
Iglesias-Groth
,
A.
Manchado
,
D. A.
Garcia-Hernandez
,
J. I.
Gonzalez Hernandez
, and
D. L.
Lambert
,
Astrophys. J.
685
,
L55
(
2008
).
2.
C. S.
McEnally
,
L. D.
Pfefferle
,
B.
Atakan
, and
K.
Kohse-Höinghaus
,
Prog. Energy Combust. Sci.
32
,
247
(
2006
).
3.
A. N.
Eraslan
and
R. C.
Brown
,
Combust. Flame
74
,
19
(
1988
).
4.
A. M.
Starik
,
A. M.
Savel’ev
, and
N. S.
Titova
,
Plasma Sources Sci. Technol.
17
,
045012
(
2008
).
5.
H.
Haverkamp
,
S.
Wilhelm
,
A.
Sorokin
, and
F.
Arnold
,
Atmos. Environ.
38
,
2879
(
2004
).
6.
D. K.
Bohme
,
S.
Wlodek
,
J. A.
Zimmerman
, and
J. R.
Eyler
,
Int. J. Mass Spectrom. Ion Process.
109
,
31
(
1991
).
7.
P. O.
Momoh
,
S. A.
Abrash
,
R.
Mabourki
, and
M. S.
El-Shall
,
J. Am. Chem. Soc.
128
,
12408
(
2006
).
8.
P. O.
Momoh
,
A. -R.
Soliman
,
M.
Meot-Ner
,
A.
Ricca
, and
M. S.
El-Shall
,
J. Am. Chem. Soc.
130
,
12848
(
2008
).
9.
M. S.
El-Shall
,
Y. M.
Ibrahim
,
E. H.
Alsharaeh
, and
M.
Meot-ner
, and
S. P.
Watson
,
J. Am. Chem. Soc.
131
,
10066
(
2009
).
10.
C. L.
Ricketts
,
D.
Schroder
,
C.
Alcaraz
, and
J.
Roithova
,
Chem.-Eur. J.
14
,
4779
(
2008
).
11.
J. H.
Waite
,
D. T.
Young
,
T. E.
Cravens
,
A. J.
Coates
,
F. J.
Crary
,
B. A.
Magee
, and
J.
Westlake
,
Science
316
,
870
(
2007
).
12.
J. -E.
Wahlund
,
M.
Galand
,
I.
Müller-Wodarg
,
J.
Cui
,
R. V.
Yelle
,
F. J.
Crary
,
K.
Mandt
,
B.
Magee
,
J. H.
Waite
, Jr.
,
D. T.
Young
,
A. J.
Coates
,
P.
Garnier
,
K.
Agren
,
M.
Andre
,
A. I.
Eriksson
,
T. E.
Cravens
,
V.
Vuitton
,
D. A.
Gurnett
, and
W. S.
Kurth
,
Planet. Space Sci.
57
,
1857
(
2009
).
13.
F. J.
Crary
,
B. A.
Magee
,
K.
Mandt
,
J. H.
Waite
, Jr.
,
J.
Westlake
, and
D. T.
Young
,
Planet. Space Sci.
57
,
1847
(
2009
).
14.
E. C.
Sittler
, Jr.
,
A.
Ali
,
J. F.
Cooper
,
R. E.
Hartle
,
R. E.
Johnson
,
A. J.
Coates
, and
D. T.
Young
,
Planet. Space Sci.
57
,
1547
(
2009
).
15.
M. L.
Delitsky
and
C. P.
McKay
,
Icarus
207
,
477
(
2010
).
16.
I. P.
Robertson
,
T. E.
Cravens
,
J. H.
Waite
, Jr.
,
R. V.
Yelle
,
V.
Vuitton
,
A. J.
Coates
,
J. E.
Wahlund
,
K.
Agren
,
K.
Mandt
,
B. A.
Magee
,
M. S.
Richard
, and
E.
Fatting
,
Planet. Space Sci.
57
,
1834
(
2009
).
17.
D.
Ascenzi
,
N.
Cont
,
G.
Guella
,
P.
Franceschi
, and
P.
Tosi
,
J. Phys. Chem. A
111
,
12513
(
2007
).
18.
A.
Giordana
,
G.
Ghigo
,
G.
Tonachini
,
D.
Ascenzi
,
P.
Tosi
, and
G.
Guella
,
J. Chem. Phys.
131
,
024304
(
2009
).
19.
P.
Tosi
,
G.
Fontana
,
S.
Longano
, and
D.
Bassi
,
Int. J. Mass Spectrom. Ion Process.
93
,
95
(
1989
).
20.
P.
Franceschi
,
L.
Penasa
,
D.
Ascenzi
,
D.
Bassi
,
M.
Scotoni
, and
P.
Tosi
,
Int. J. Mass. Spectrom.
265
,
224
(
2007
).
21.
J. A.
Pople
,
P. M. W.
Gill
, and
B. G.
Johnson
,
Chem. Phys. Lett.
199
,
557
(
1992
);
H. B.
Schlegel
, in
Computational Theoretical Organic Chemistry
, edited by
I. G.
Csizsmadia
and
R.
Daudel
(
Reidel
,
Dordrecht
,
1981
), pp.
129
159
;
H. B.
Schlegel
,
J. Chem. Phys.
77
,
3676
(
1982
);
H. B.
Schlegel
,
J. S.
Binkley
, and
J. A.
Pople
,
J. Chem. Phys.
80
,
1976
(
1984
);
H. B.
Schlegel
,
J. Comput. Chem.
3
,
214
(
1982
).
22.
R. G.
Parr
and
W.
Yang
,
Density Functional Theory of Atoms and Molecules
(
Oxford University Press
,
New York
,
1989
), Chap. 3.
23.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2008
);
Y.
Zhao
and
D. G.
Truhlar
,
Acc. Chem. Res.
41
,
157
(
2008
);
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
112
,
1095
(
2008
);
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
4
,
1849
(
2008
).
24.
E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
25.
A.
Halkier
,
T.
Hegaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
26.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
, et al, GAUSSIAN 09, Revision A.02, Gaussian, Inc., Wallingford CT,
2009
.
27.
28.
G.
Angelini
,
Y.
Keheyan
,
E.
Lilla
, and
G.
Perez
,
Radiochim. Acta
51
,
173
(
1990
).
29.
Y.
Keheyan
and
R.
Bassanelli
,
Radiat. Phys. Chem.
47
,
465
(
1996
).
30.
M.
Slegt
,
F.
Minne
,
H.
Zuilhof
,
H. S.
Overkleeft
, and
G.
Lodder
,
Eur. J. Org. Chem.
2007
,
5353
(
2007
).
31.
We can report that in Ref. 30 the reverse ordering was found: “calculations at the B3LYP/6–311G(d,p) in vacuo give the triplet as the most stable structure, with the singlet lying only 1.1kcalmol1 higher in energy.”
32.
We report here some cc-pvTZ energy differences. Starting from naphthylium in the triplet state, 1 is at 28.3kcalmol1 and the barrier for H migration (12) is +6.3kcalmol1 above the reactants. The C–C bond formation (23) from 2(32.9kcalmol1) is located at +7.9kcalmol1 and leads to the intermediate 3 (2.5kcalmol1 with respect to the reactants). Both H migrations form 3 (34a and 34) have energy barriers above the reactants: +25.6 and +13.8kcalmol1, respectively.
33.
See supplementary material at http://dx.doi.org/10.1063/1.3505553 for M06–2X/cc-pvTZ optimized structures (cartesian coordinates) of reactants, products, transition structures, and intermediates, and their M06-2X/CBS//M06-2X/cc-pvTZ energies.
34.
Such losses can take place from a large number of structures. Just as an example, we report that H loss from any of the 1-1IV isomers depicted in Scheme 3 leads to a dissociation limit located at 9.6kcalmol1 with respect to the reagents. In accord with the experimental data (Table I), it appears to be in competition with methyl loss.
35.
D.
Ascenzi
,
D.
Bassi
,
P.
Franceschi
,
P.
Tosi
,
M.
Di Stefano
,
M.
Rosi
, and
A.
Sgamellotti
,
J. Chem. Phys.
119
,
8366
(
2003
).
36.
D.
Ascenzi
,
D.
Bassi
,
P.
Franceschi
,
O.
Hadjar
,
P.
Tosi
,
M.
Di Stefano
,
M.
Rosi
, and
A.
Sgamellotti
,
J. Chem. Phys.
121
,
6728
(
2004
).
37.
C13 contributions of peaks at m/z=m on peaks at m/z=m+1 in the clusters corresponding to C15(H,D)n+(n=911) amounts to 5.35%.

Supplementary Material

You do not currently have access to this content.