We present a generalization to our previously developed quantum wavepacket ab initio molecular dynamics (QWAIMD) method by using multiple diabatic electronic reduced single particle density matrices, propagated within an extended Lagrangian paradigm. The Slater determinantal wavefunctions associated with the density matrices utilized may be orthogonal or nonorthogonal with respect to each other. This generalization directly results from an analysis of the variance in electronic structure with quantum nuclear degrees of freedom. The diabatic electronic states are treated here as classical parametric variables and propagated simultaneously along with the quantum wavepacket and classical nuclei. Each electronic density matrix is constrained to be N-representable. Consequently two sets of new methods are derived: extended Lagrangian-QWAIMD (xLag-QWAIMD) and diabatic extended Lagrangian-QWAIMD (DxLag-QWAIMD). In both cases, the instantaneous potential energy surface for the quantum nuclear degrees of freedom is constructed from the diabatic states using an on-the-fly nonorthogonal multireference formalism. By introducing generalized grid-based electronic basis functions, we eliminate the basis set dependence on the quantum nucleus. Subsequent reuse of the two-electron integrals during the on-the-fly potential energy surface computation stage yields a substantial reduction in computational costs. Specifically, both xLag-QWAIMD and DxLag-QWAIMD turn out to be about two orders of magnitude faster than our previously developed time-dependent deterministic sampling implementation of QWAIMD. Energy conservation properties, accuracy of the associated potential surfaces, and vibrational properties are analyzed for a family of hydrogen bonded systems.

1.
S. S.
Iyengar
and
J.
Jakowski
,
J. Chem. Phys.
122
,
114105
(
2005
).
2.
S. S.
Iyengar
,
Theor. Chem. Acc.
116
,
326
(
2006
).
3.
J.
Jakowski
,
I.
Sumner
, and
S. S.
Iyengar
,
J. Chem. Theory Comput.
2
,
1203
(
2006
).
4.
I.
Sumner
and
S. S.
Iyengar
,
J. Phys. Chem. A
111
,
10313
(
2007
).
5.
I.
Sumner
and
S. S.
Iyengar
,
J. Chem. Phys.
129
,
054109
(
2008
).
6.
S. S.
Iyengar
,
I.
Sumner
, and
J.
Jakowski
,
J. Phys. Chem. B
112
,
7601
(
2008
).
7.
I.
Sumner
and
S. S.
Iyengar
,
J. Chem. Theory Comput.
6
,
1698
(
2010
).
8.
A.
Pacheco
and
S. S.
Iyengar
,
J. Chem. Phys.
133
,
044105
(
2010
).
9.
S. S.
Iyengar
,
Int. J. Quantum Chem.
109
,
3798
(
2009
).
10.
J. C.
Tully
,
Faraday Discuss.
110
,
407
(
1998
).
11.
R.
Kapral
and
G.
Ciccotti
,
J. Chem. Phys.
110
,
8919
(
1999
).
12.
I.
Horenko
,
C.
Salzmann
,
B.
Schmidt
, and
C.
Schutte
,
J. Chem. Phys.
117
,
11075
(
2002
).
13.
A.
Donoso
,
Y. J.
Zheng
, and
C. C.
Martens
,
J. Chem. Phys.
119
,
5010
(
2003
).
14.
C.
Brooksby
and
O. V.
Prezhdo
,
Chem. Phys. Lett.
346
,
463
(
2001
).
15.
O. V.
Prezhdo
and
C.
Brooksby
,
Phys. Rev. Lett.
86
,
3215
(
2001
).
16.
E.
Gindensperger
,
C.
Meier
, and
J. A.
Beswick
,
J. Chem. Phys.
113
,
9369
(
2000
).
17.
S.
Hammes-Schiffer
and
J.
Tully
,
J. Chem. Phys.
101
,
4657
(
1994
).
18.
Y.
Chan
,
Wavelet Basics
(
Kluwer Academic
,
1995
).
19.
I.
Daubechies
,
Ten Lectures in Wavelets
(
SIAM
,
Philadelphia, PA
,
1992
).
20.
G.
Strang
and
T.
Nguyen
,
Wavelets and Filter Banks
(
Wellesley-Cambridge
,
1996
).
21.
G.
Strang
and
V.
Strela
,
Opt. Eng.
33
,
2104
(
1994
).
22.
23.
B. R.
Johnson
,
J. P.
Modisette
,
P. J.
Nordlander
, and
J. L.
Kinsey
,
J. Chem. Phys.
110
,
8309
(
1999
).
24.
G. W.
Wei
,
D. S.
Zhang
,
D. K.
Kouri
, and
D. J.
Hoffman
,
Phys. Rev. Lett.
79
,
775
(
1997
).
25.
D. K.
Hoffman
,
G. W.
Wei
,
D. S.
Zhang
, and
D. J.
Kouri
,
Phys. Rev. E
57
,
6152
(
1998
).
26.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C
(
Cambridge University Press
,
New York
,
1992
).
27.
28.
I.
Sumner
,
P.
Phatak
, and
S. S.
Iyengar
(in preparation).
29.
S.
Yamanaka
,
S.
Nishihara
,
K.
Nakata
,
Y.
Yonezawa
,
M.
Okumura
,
T.
Takada
,
H.
Nakamura
, and
K.
Yamaguchi
,
Int. J. Quantum Chem.
109
,
3811
(
2009
).
30.
R. L.
Martin
,
J. Chem. Phys.
74
,
1852
(
1981
).
31.
A. F.
Voter
and
W. A.
Goddard
 III
,
Chem. Phys.
57
,
253
(
1981
).
32.
C. F.
Jackels
and
E. R.
Davidson
,
J. Chem. Phys.
64
,
2908
(
1976
).
33.
A. J. W.
Thom
and
M.
Head-Gordon
,
J. Chem. Phys.
131
,
124113
(
2009
).
34.
Q.
Wu
,
C. -L.
Cheng
, and
T.
Van Voorhis
,
J. Chem. Phys.
127
,
164119
(
2007
).
35.
J.
Skone
,
M.
Pak
, and
S.
Hammes-Schiffer
,
J. Chem. Phys.
123
,
134108
(
2005
).
36.
P. Y.
Ayala
and
H. B.
Schlegel
,
J. Chem. Phys.
108
,
7560
(
1998
).
37.
M. F.
Trotter
,
Proc. Am. Math. Soc.
10
,
545
(
1959
).
38.
E.
Nelson
,
J. Math. Phys.
5
,
332
(
1964
).
39.
Y.
Huang
,
D. J.
Kouri
,
M.
Arnold
,
I.
Thomas
,
L.
Marchioro
, and
D. K.
Hoffman
,
Comput. Phys. Commun.
80
,
1
(
1994
).
40.
D. K.
Hoffman
,
N.
Nayar
,
O. A.
Sharafeddin
, and
D. J.
Kouri
,
J. Phys. Chem.
95
,
8299
(
1991
).
41.
D. J.
Kouri
,
Y.
Huang
, and
D. K.
Hoffman
,
Phys. Rev. Lett.
75
,
49
(
1995
).
42.
C.
Swalina
and
S.
Hammes-Schiffer
,
J. Phys. Chem. A
109
,
10410
(
2005
).
43.
R. B.
Gerber
and
M. A.
Ratner
,
J. Chem. Phys.
70
,
97
(
1988
).
44.
N.
Matsunaga
,
G. M.
Chaban
, and
R. B.
Gerber
,
J. Chem. Phys.
117
,
3541
(
2002
).
45.
X.
Li
,
J.
Oomens
,
J. R.
Eyler
,
D. T.
Moore
, and
S. S.
Iyengar
,
J. Chem. Phys.
132
,
244301
(
2010
).
46.
D.
Hocker
,
X.
Li
, and
S. S.
Iyengar
, “
Shannon information entropy based time-dependent deterministic sampling techniques for efficient on-the-fly quantum dynamics and electronic structure
,”
J. Chem. Phys.
(submitted).
47.
C.
Shannon
,
Bell Syst. Tech. J.
27
,
279
(
1948
).
49.
R.
McWeeny
,
Rev. Mod. Phys.
32
,
335
(
1960
).
50.
A. J. W.
Thom
and
M.
Head-Gordon
,
Phys. Rev. Lett.
101
,
193001
(
2008
).
51.
G. H.
Golub
and
C. F.
van Loan
,
Matrix Computations
(
The Johns Hopkins University Press
,
Baltimore
,
1996
).
52.
S. T.
Roweis
and
L. K.
Saul
,
Science
290
,
2323
(
2000
).
53.
J.
Tenenbaum
,
Neural Information Processing
(
MIT Press
,
Cambridge, MA
,
1988
), pp.
682
688
.
54.
B.
Roos
,
Theory and Applications of Computational Chemistry: The First 40 Years
(
Elsevier Science
,
2005
).
55.
M.
Baer
,
Beyond Born–Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections
(
Wiley
,
New York
,
2006
).
56.
G.
Hanna
and
R.
Kapral
,
Acc. Chem. Res.
39
,
21
(
2006
).
57.
G. A.
Worth
and
L. S.
Cederbaum
,
Annu. Rev. Phys. Chem.
55
,
127
(
2004
).
58.
A. W.
Jasper
,
C.
Zhu
,
S.
Nangia
, and
D. G.
Truhlar
,
Faraday Discuss.
127
,
1
(
2004
).
59.
B. K.
Kendrick
,
C. A.
Mead
, and
D. G.
Truhlar
,
Chem. Phys.
277
,
31
(
2002
).
60.
A.
Kuppermann
,
Dynamics of Molecules and Chemical Reactions
(
Marcel Dekker
,
New York, NY
,
1996
), pp.
411
472
.
61.
D. R.
Yarkony
,
Rev. Mod. Phys.
68
,
985
(
1996
).
62.
S.
Matsika
and
D. R.
Yarkony
,
J. Am. Chem. Soc.
125
,
10672
(
2003
).
63.
H. B.
Schlegel
,
J. M.
Millam
,
S. S.
Iyengar
,
G. A.
Voth
,
A. D.
Daniels
,
G. E.
Scuseria
, and
M. J.
Frisch
,
J. Chem. Phys.
114
,
9758
(
2001
).
64.
S. S.
Iyengar
,
H. B.
Schlegel
,
J. M.
Millam
,
G. A.
Voth
,
G. E.
Scuseria
, and
M. J.
Frisch
,
J. Chem. Phys.
115
,
10291
(
2001
).
65.
H. B.
Schlegel
,
S. S.
Iyengar
,
X.
Li
,
J. M.
Millam
,
G. A.
Voth
,
G. E.
Scuseria
, and
M. J.
Frisch
,
J. Chem. Phys.
117
,
8694
(
2002
).
66.
S. S.
Iyengar
,
H. B.
Schlegel
,
G. A.
Voth
,
J. M.
Millam
,
G. E.
Scuseria
, and
M. J.
Frisch
,
Isr. J. Chem.
42
,
191
(
2002
).
67.
S. S.
Iyengar
,
M. K.
Petersen
,
T. J. F.
Day
,
C. J.
Burnham
,
V. E.
Teige
, and
G. A.
Voth
,
J. Chem. Phys.
123
,
084309
(
2005
).
68.
S. S.
Iyengar
,
J. Chem. Phys.
126
,
216101
(
2007
).
69.
S. S.
Iyengar
,
T. J. F.
Day
, and
G. A.
Voth
,
Int. J. Mass. Spectrom.
241
,
197
(
2005
).
70.
S. S.
Iyengar
,
J. Chem. Phys.
123
,
084310
(
2005
).
71.
X.
Li
,
V. E.
Teige
, and
S. S.
Iyengar
,
J. Phys. Chem. A
111
,
4815
(
2007
).
72.
X.
Li
,
D. T.
Moore
, and
S. S.
Iyengar
,
J. Chem. Phys.
128
,
184308
(
2008
).
73.
R. S.
Mulliken
,
J. Chem. Phys.
61
,
20
(
1964
).
74.
A.
Warshel
and
R. M.
Weiss
,
J. Am. Chem. Soc.
102
,
6218
(
1980
).
75.
Y. -T.
Chang
and
W. H.
Miller
,
J. Phys. Chem.
94
,
5884
(
1990
).
76.
D.
Borgis
and
A.
Staib
,
Chem. Phys. Lett.
238
,
187
(
1995
).
77.
T. J. F.
Day
,
A. V.
Soudachov
,
M.
Cuma
,
U. W.
Schmidt
, and
G. A.
Voth
,
J. Chem. Phys.
117
,
5839
(
2002
).
78.
W. A.
Goddard
 III
,
Phys. Rev.
157
,
73
(
1967
).
79.
J.
Gerratt
,
D. L.
Cooper
,
P. B.
Karadakov
, and
M.
Raimondi
,
Chem. Soc. Rev.
26
,
87
(
1997
).
80.
A.
Szabo
and
N.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
, 1st ed. (
Dover
,
New York
,
1996
).
81.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
Wiley
,
New York
,
2000
).
82.
P. A. M.
Dirac
,
The Principles of Quantum Mechanics
,
The International Series of Monographs on Physics
Vol.
27
, 4th ed. (
Oxford University Press
,
New York
,
1958
).
83.
A. T.
Amos
and
G. G.
Hall
,
Proc. R. Soc. London, Ser. A
263
,
483
(
1961
).
84.
P. -O.
Löwdin
,
J. Appl. Phys.
33
,
251
(
1962
).
85.
P. -O.
Löwdin
,
Phys. Rev.
97
,
1490
(
1955
).
86.
W. A.
Goddard
 III
,
J. Chem. Phys.
48
,
450
(
1968
).
87.
P. -O.
Löwdin
,
Phys. Rev.
97
,
1474
(
1955
).
88.
G. E.
Scuseria
,
J. Phys. Chem. A
103
,
4782
(
1999
).
90.
S.
Goedecker
,
Rev. Mod. Phys.
71
,
1085
(
1999
).
91.
C. A.
White
and
M.
Head-Gordon
,
J. Chem. Phys.
101
,
6593
(
1994
).
92.
M. C.
Strain
,
G. E.
Scuseria
, and
M. J.
Frisch
,
Science
271
,
51
(
1996
).
93.
X. P.
Li
,
W.
Nunes
, and
D.
Vanderbilt
,
Phys. Rev. B
47
,
10891
(
1993
).
94.
J. M.
Millam
and
G. E.
Scuseria
,
J. Chem. Phys.
106
,
5569
(
1997
).
95.
A. D.
Daniels
,
J. M.
Millam
, and
G. E.
Scuseria
,
J. Chem. Phys.
107
,
425
(
1997
).
96.
S.
Rothenberg
and
H. F.
Schaefer
 III
,
J. Chem. Phys.
54
,
2764
(
1971
).
97.
F. -M.
Tao
and
Y. -K.
Pan
,
J. Chem. Phys.
97
,
4989
(
1992
).
98.
F. -M.
Tao
,
J. Chem. Phys.
98
,
2481
(
1993
).
99.
H. L.
Williams
,
E. M.
Mas
,
K.
Szalewicz
, and
B.
Jeziorski
,
J. Chem. Phys.
103
,
7374
(
1995
).
100.
H.
Ichikawa
,
H.
Kagawa
, and
C.
Kaneko
,
Bull. Chem. Soc. Jpn.
73
,
2001
(
2000
).
101.
J. M. L.
Martin
,
J. P.
François
, and
R.
Gijbels
,
J. Comput. Chem.
10
,
875
(
1989
).
103.
K.
Kawaguchi
,
J. Chem. Phys.
88
,
4186
(
1988
).
104.
C.
Swalina
,
M. V.
Pak
, and
S.
Hammes-Schiffer
,
Chem. Phys. Lett.
404
,
394
(
2005
).
105.
A. B.
McCoy
,
J. Chem. Phys.
103
,
986
(
1995
).
106.
P.
Botschwina
,
P.
Sebal
, and
R.
Burmeister
,
J. Chem. Phys.
88
,
5246
(
1988
).
107.
R. B.
Metz
,
T.
Kitsopoulos
,
A.
Weaver
, and
D.
Neumark
,
J. Chem. Phys.
88
,
1463
(
1988
).
108.
M. G.
Del Pópolo
,
J.
Kohanoff
, and
R. M.
Lynden-Bell
,
J. Phys. Chem. B
110
,
8798
(
2006
).
109.
O.
,
M.
Yáñez
,
J. E.
Del Bene
,
I.
Alkorta
, and
J.
Elguero
,
ChemPhysChem
6
,
1411
(
2005
).
110.
R. T.
Pack
and
G. A.
Parker
,
J. Chem. Phys.
87
,
3888
(
1987
).
111.
S.
Carter
and
J. M.
Bowman
,
J. Chem. Phys.
108
,
4397
(
1998
).
112.
S. S.
Iyengar
,
G. A.
Parker
,
D. J.
Kouri
, and
D. K.
Hoffman
,
J. Chem. Phys.
110
,
10283
(
1999
).
113.
A.
Kuppermann
,
J. Phys. Chem. A
113
,
4518
(
2009
).
114.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., Gaussian Development Version, Revision b.01, Gaussian, Inc., Pittsburgh, PA.
115.
A. D.
Becke
,
J. Chem. Phys.
88
,
2547
(
1988
).
116.
V. I.
Lebedev
,
Zh. Vychisl. Mat. Mat. Fiz.
15
,
48
(
1975
).
117.
V. I.
Lebedev
,
Zh. Vychisl. Mat. Mat. Fiz.
16
,
293
(
1976
).
118.
V. I.
Lebedev
and
L.
Skorokhodov
,
Russian Acad., Sci. Dokl. Math.
45
,
587
(
1992
).
119.
K. D.
Kreuer
,
A.
Fuchs
,
M.
Ise
,
M.
Spaeth
, and
J.
Maier
,
Electrochim. Acta
43
,
1281
(
1998
).
120.
M. E.
Tuckerman
,
D.
Marx
, and
M.
Parrinello
,
Nature (London)
417
,
925
(
2002
).
121.
D.
Marx
,
M. E.
Tuckerman
,
J.
Hutter
, and
M.
Parrinello
,
Nature (London)
397
,
601
(
1999
).
122.
D.
Asthagiri
,
L. R.
Pratt
,
J. D.
Kress
, and
M. A.
Gomez
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
7229
(
2004
).
123.
J. -W.
Shin
,
N. I.
Hammer
,
E. G.
Diken
,
M. A.
Johnson
,
R. S.
Walters
,
T. D.
Jaeger
,
M. A.
Duncan
,
R. A.
Christie
, and
K. D.
Jordan
,
Science
304
,
1137
(
2004
).
124.
E. G.
Diken
,
J. M.
Headrick
,
J. R.
Roscioli
,
J. C.
Bopp
,
M. A.
Johnson
,
A. B.
McCoy
,
X.
Huang
,
S.
Carter
, and
J. M.
Bowman
,
J. Phys. Chem. A
109
,
571
(
2005
).
125.
N. I.
Hammer
,
E. G.
Diken
,
J. R.
Roscioli
,
M. A.
Johnson
,
E. M.
Myshakin
,
K. D.
Jordan
,
A. B.
McCoy
,
X.
Huang
,
J. M.
Bowman
, and
S.
Carter
,
J. Chem. Phys.
122
,
244301
(
2005
).
You do not currently have access to this content.