In this paper, Brownian dynamics simulation (BDS) studies are executed to demonstrate the distinctive influences of the extent of confinement on the collapsing mechanism and kinetics of a flexible hydrophobic polymer chain in a poor solvent. The collapsing behavior is quantified by the time of collapse, which below a critical dimension of the confinement (hc), encounters a drastic reduction with a further strengthening in the degree of confinement. For dimensions greater than this critical one, the collapse occurs through the well-known hydrodynamic interaction (HI) controlled multiple-globule-mediated mechanisms. However, for channel dimensions less than this critical one, the collapse mechanism is drastically altered. Under such circumstances, the collapse gets predominantly controlled by the confinement effects (with negligible contribution of the HIs) and occurs via the formation of a single central globule. This central globule rapidly engulfs the noncondensed polymer segments, and in the process largely hastens up the collapsing event. Under such circumstances, the collapse time is found to decrease linearly with decrements in the channel height. On the contrary, for channel heights greater than hc, the multiple-globule-mediated collapse is characterized by a collapse time that shows an exponential dependence on the channel height, rapidly attaining a state in which the confinement effect becomes inconsequential and HIs dictate the entire collapsing behavior. We further propose detailed arguments based on physical reasoning as well as free energy estimations to conclusively support the qualitative and quantitative nature of influences of the confinement on the polymer collapse.

1.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca
,
1979
).
2.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
Oxford
,
1986
).
3.
P. G.
de Gennes
,
J. Phys. (France) Lett.
46
,
639
(
1985
).
4.
H.
Zhou
,
J.
Zhou
,
Z. -C.
Ou-Yang
, and
S.
Kumar
,
Phys. Rev. Lett.
97
,
158302
(
2006
).
5.
J.
Xu
,
Z.
Zhu
,
S.
Luo
,
C.
Wu
, and
S.
Liu
,
Phys. Rev. Lett.
96
,
027802
(
2006
).
6.
N.
Yoshinaga
,
Phys. Rev. E
77
,
061805
(
2008
).
7.
A.
Montesi
,
M.
Pasquali
, and
F. C.
MacKintosh
,
Phys. Rev. E
69
,
021916
(
2004
).
8.
R.
Zhou
,
X.
Huang
,
C. J.
Margulis
, and
B. J.
Berne
,
Science
305
,
1605
(
2004
);
[PubMed]
M. M.
Patel
and
T. J.
Anchordoquy
,
Biophys. J.
88
,
2089
(
2005
);
[PubMed]
R.
Appel
,
W.
Xu
, and
T. W.
Zerda
,
Macromolecules
31
,
5071
(
1998
);
[PubMed]
P. W.
Zhu
and
D. H.
Napper
,
Phys. Rev. E
61
,
2859
(
2000
);
A.
Byrne
,
P.
Kiernan
,
D.
Green
, and
K. A.
Dawson
,
J. Chem. Phys.
102
,
573
(
1995
).
9.
J. M.
Polson
and
M. J.
Zuckermann
,
J. Chem. Phys.
113
,
1283
(
2000
);
M.
Polson
and
M. J.
Zuckermann
,
J. Chem. Phys.
116
,
7244
(
2002
);
J. M.
Polson
and
N. E.
Moore
,
J. Chem. Phys.
122
,
024905
(
2005
).
[PubMed]
10.
N.
Kikuchi
,
A.
Gent
, and
J. M.
Yeomans
,
Eur. Phys. J. E
9
,
63
(
2002
).
11.
N.
Kikuchi
,
J. F.
Ryder
,
C. M.
Pooley
, and
J. M.
Yeomans
,
Phys. Rev. E
71
,
061804
(
2005
).
12.
K. A.
Dawson
,
E. G.
Timoshenko
, and
P.
Kiernan
,
Nuovo Cimento D
16
,
675
(
1994
).
13.
A.
Halperin
and
P. M.
Goldbart
,
Phys. Rev. E
61
,
565
(
2000
).
14.
L.
Klushin
,
J. Chem. Phys.
108
,
7917
(
1998
).
15.
C. F.
Abrams
,
N.
Lee
, and
S.
Obukhov
,
Europhys. Lett.
59
,
391
(
2002
).
16.
E.
Pitard
,
Eur. Phys. J. B
7
,
665
(
1999
).
17.
Y. A.
Kuznetsov
,
E. G.
Timoshenko
, and
K. A.
Dawson
,
J. Chem. Phys.
104
,
3338
(
1996
).
18.
E. G.
Timoshenko
and
K. A.
Dawson
,
Phys. Rev. E
51
,
492
(
1995
);
Y. A.
Kuznetsov
,
E. G.
Timoshenko
, and
K. A.
Dawson
,
J. Chem. Phys.
102
,
1816
(
1995
);
E.
Pitard
and
H.
Orland
,
Europhys. Lett.
41
,
467
(
1998
).
19.
Y. A.
Kuznetsov
,
E. G.
Timoshenko
, and
K. A.
Dawson
,
J. Chem. Phys.
103
,
4807
(
1995
).
20.
B.
Schnurr
,
F. C.
MacKintosh
, and
D. R. M.
Williams
,
Europhys. Lett.
51
,
279
(
2000
).
21.
T. T.
Pham
,
M.
Bajaj
, and
J. R.
Prakash
,
Soft Matter
4
,
1196
(
2008
).
22.
R.
Chang
and
Y.
Yethiraj
,
J. Chem. Phys.
114
,
7688
(
2001
).
23.
G.
Magila
,
M. R.
Restrepo
,
E.
Mikhailova
, and
H.
Bayley
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
19720
(
2008
);
[PubMed]
T.
Hu
and
B. I.
Shklovskii
,
Phys. Rev. E
78
,
032901
(
2008
).
24.
T.
Das
,
S.
Das
, and
S.
Chakraborty
,
J. Chem. Phys.
130
,
244904
(
2009
).
25.
R. M.
Jendrejack
,
E. T.
Dilamanta
,
D. C.
Schwartz
,
M. D.
Graham
, and
J. J.
de Pablo
,
Phys. Rev. Lett.
91
,
038102
(
2003
);
[PubMed]
R. M.
Jendrejack
,
D. C.
Schwartz
,
J. J.
de Pablo
, and
M. D.
Graham
,
J. Chem. Phys.
120
,
2513
(
2004
).
[PubMed]
26.
R. M.
Jendrejack
,
D. C.
Schwartz
,
M. D.
Graham
, and
J. J.
de Pablo
,
J. Chem. Phys.
119
,
1165
(
2003
).
27.
M.
Fixman
,
Macromolecules
19
,
1204
(
1986
).
28.
C.
Pozrikidis
,
Introduction to Theoretical and Computational Fluid Dynamics
(
Oxford University Press
,
New York
,
1977
).
29.
B. U.
Felderhof
,
Physica A
89
,
373
(
1977
).
30.
Y. -L.
Chen
,
M. D.
Graham
,
J. J.
de Pablo
,
G. C.
Randall
,
M.
Gupta
, and
P. S.
Doyle
,
Phys. Rev. E
70
,
060901
(R) (
2004
);
C. -C.
Hsieh
,
A.
Balducci
, and
P. S.
Doyle
,
Nano Lett.
8
,
1683
(
2008
).
[PubMed]
31.
A.
Balducci
,
P.
Mao
,
J.
Han
, and
P. S.
Doyle
,
Macromolecules
39
,
6273
(
2006
).
32.
S. -B.
Zhu
and
G. W.
Robinson
,
J. Chem. Phys.
94
,
1403
(
1991
);
R.
Qiao
and
N. R.
Aluru
,
J. Chem. Phys.
118
,
4692
(
2003
).
33.
C. S.
Peskin
,
Acta Numerica
11
,
479
(
2002
);
R.
Mittal
and
G.
Iacarrino
,
Annu. Rev. Fluid Mech.
37
,
239
(
2005
).
34.
J. P. K.
Doye
,
R. P.
Sear
, and
D.
Frenkel
,
J. Chem. Phys.
108
,
2134
(
1998
).
35.
www.kirbyresearch.com/index.cfm/wrap/textbook/microfluidicsnanofluidics.html.
36.
C. -C.
Hsieh
,
A.
Balducci
, and
P. S.
Doyle
,
Macromolecules
40
,
5196
(
2007
).
37.
M. V.
Athawale
,
G.
Goel
,
T.
Ghosh
,
T. M.
Truskett
, and
S.
Garde
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
733
(
2007
).
38.
T. L.
Hill
,
Statistical Mechanics
(
McGraw-Hill
,
New York
,
1956
).
39.
G.
Goel
,
M. V.
Athawale
,
S.
Garde
, and
T. M.
Truskett
,
J. Phys. Chem. B
112
,
13193
(
2008
).
40.
H. -C.
Ottinger
,
Stochastic Processes in Polymeric Fluids
(
Springer
,
Berlin
,
1996
).
41.
R. M.
Jendrejack
,
M. D.
Graham
, and
J. J.
De Pablo
,
J. Chem. Phys.
113
,
2894
(
2000
).
42.
C.
Canuto
,
M. Y.
Hussaini
,
A.
Quarteroni
, and
T. A.
Zang
,
Spectral Methods in Fluid Dynamics
(
Springer-Verlag
,
Berlin
,
1988
).
You do not currently have access to this content.