A rigorous perturbation theory is proposed, which has the same second order energy as the spin-component-scaled Møller–Plesset second order (SCS-MP2) method of Grimme [J. Chem. Phys.118, 9095 (2003)]. This upgrades SCS-MP2 to a systematically improvable, true wave-function-based method. The perturbation theory is defined by an unperturbed Hamiltonian, Ĥ(0), that contains the ordinary Fock operator and spin operators Ŝ2 that act either on the occupied or the virtual orbital spaces. Two choices for Ĥ(0) are discussed and the importance of a spin-pure Ĥ(0) is underlined. Like the SCS-MP2 approach, the theory contains two parameters (cos and css) that scale the opposite-spin and the same-spin contributions to the second order perturbation energy. It is shown that these parameters can be determined from theoretical considerations by a Feenberg scaling approach or a fit of the wave functions from the perturbation theory to the exact one from a full configuration interaction calculation. The parameters cos=1.15 and css=0.75 are found to be optimal for a reasonable test set of molecules. The meaning of these parameters and the consequences following from a well defined improved MP method are discussed.

1.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
2.
E.
Schrödinger
,
Ann. Phys.
385
,
437
(
1926
).
3.
E.
Schrödinger
,
Ann. Phys.
384
,
361
(
1926
).
4.
J.
Olsen
,
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
J. Chem. Phys.
105
,
5082
(
1996
).
5.
J.
Olsen
,
P.
Jørgensen
,
T.
Helgaker
, and
O.
Christiansen
,
J. Chem. Phys.
112
,
9736
(
2000
).
6.
M. L.
Leininger
,
W. D.
Allen
,
H. F.
Schaefer
 III
, and
C. D.
Sherrill
,
J. Chem. Phys.
112
,
9213
(
2000
).
7.
B.
Doser
,
D. S.
Lambrecht
,
J.
Kussmann
, and
C.
Ochsenfeld
,
J. Chem. Phys.
130
,
064107
(
2009
).
8.
T. B.
Adler
,
H. -J.
Werner
, and
F. R.
Manby
,
J. Chem. Phys.
130
,
054106
(
2009
).
9.
M.
Feyereisen
,
G.
Fitzgerald
, and
A.
Komornicki
,
Chem. Phys. Lett.
208
,
359
(
1993
).
10.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
(
1998
).
11.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
12.
M.
Schütz
,
H. -J.
Werner
,
R.
Lindh
, and
F. R.
Manby
,
J. Chem. Phys.
121
,
737
(
2004
).
13.
K.
Wolinski
,
H. L.
Sellers
, and
P.
Pulay
,
Chem. Phys. Lett.
140
,
225
(
1987
).
14.
K.
Andersson
,
P. -Å.
Malmqvist
,
B.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
,
J. Phys. Chem.
94
,
5483
(
1990
).
15.
16.
P.
Celani
and
H. -J.
Werner
,
J. Chem. Phys.
112
,
5546
(
2000
).
17.
I.
Shavitt
,
Int. J. Mol. Sci.
3
,
639
(
2002
).
18.
S.
Grimme
,
J. Chem. Phys.
118
,
9095
(
2003
).
19.
M.
Gerenkamp
and
S.
Grimme
,
Chem. Phys. Lett.
392
,
229
(
2004
).
20.
M.
Piacenza
and
S.
Grimme
,
ChemPhysChem
6
,
1554
(
2005
).
21.
M.
Piacenza
and
S.
Grimme
,
J. Comput. Chem.
25
,
83
(
2004
).
22.
S.
Grimme
,
Chem.-Eur. J.
10
,
3423
(
2004
).
23.
T. P. M.
Goumans
,
A. W.
Ehlers
,
K.
Lammertsma
, and
S.
Grimme
,
Chem.-Eur. J.
10
,
6468
(
2004
).
24.
M.
Piacenza
and
S.
Grimme
,
J. Am. Chem. Soc.
127
,
14841
(
2005
).
25.
M.
Parac
,
M.
Etinski
,
M.
Peric
, and
S.
Grimme
,
J. Chem. Theory Comput.
1
,
1110
(
2005
).
26.
E.
Izgorodina
,
M.
Coote
, and
L.
Radom
,
J. Phys. Chem. A
109
,
7558
(
2005
).
27.
S.
Grimme
,
J. Phys. Chem. A
109
,
3067
(
2005
).
28.
J. G.
Hill
,
J. A.
Platts
, and
H. -J.
Werner
,
Phys. Chem. Chem. Phys.
8
,
4072
(
2006
).
29.
S.
Grimme
,
C.
Muck-Lichtenfeld
,
E. -U.
Wurthwein
,
A.
Ehlers
,
T.
Goumans
, and
K.
Lammertsma
,
J. Phys. Chem. A
110
,
2583
(
2006
).
30.
A.
Tekin
and
G.
Jansen
,
Phys. Chem. Chem. Phys.
9
,
1680
(
2007
).
31.
S.
Grimme
,
M.
Steinmetz
, and
M.
Korth
,
J. Org. Chem.
72
,
2118
(
2007
).
32.
J.
Antony
and
S.
Grimme
,
J. Phys. Chem. A
111
,
4862
(
2007
).
33.
R. A.
Bachorz
,
F. A.
Bischoff
,
S.
Höfener
,
W.
Klopper
,
P.
Ottiger
,
R.
Leist
,
J. A.
Frey
, and
S.
Leutwyler
,
Phys. Chem. Chem. Phys.
10
,
2758
(
2008
).
34.
T.
Schwabe
and
S.
Grimme
,
Acc. Chem. Res.
41
,
569
(
2008
).
35.
T.
Schwabe
and
S.
Grimme
,
J. Phys. Chem. A
113
,
3005
(
2009
).
36.
S. E.
Wheeler
,
A.
Moran
,
S. N.
Pieniazek
, and
K. N.
Houk
,
J. Phys. Chem. A
113
,
10376
(
2009
).
37.
H. F.
Bettinger
,
T.
Kar
, and
E.
Sánchez-García
,
J. Phys. Chem. A
113
,
3353
(
2009
).
38.
C. D.
Sherrill
,
T.
Takatani
, and
E. G.
Hohenstein
,
J. Phys. Chem. A
113
,
10146
(
2009
).
39.
B.
Champagne
and
B.
Kirtman
,
Int. J. Quantum Chem.
109
,
3103
(
2009
).
40.
P.
Jurečka
,
J.
Šponer
,
J.
Cerný
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
(
2006
).
41.
K.
Müller-Dethlefs
and
P.
Hobza
,
Chem. Rev. (Washington, D.C.)
100
,
143
(
2000
).
42.
V.
Coropceanu
,
J.
Cornil
,
D. A.
da Silva Filho
,
Y.
Olivier
,
R.
Silbey
, and
J. -L.
Bredas
,
Chem. Rev. (Washington, D.C.)
107
,
926
(
2007
).
43.
H. -M.
Zhao
,
J.
Pfister
,
V.
Settels
,
M.
Renz
,
M.
Kaupp
,
V. C.
Dehm
,
F.
Würthner
,
R. F.
Fink
, and
B.
Engels
,
J. Am. Chem. Soc.
131
,
15660
(
2009
).
44.
R. F.
Fink
,
J.
Seibt
,
V.
Engel
,
M.
Renz
,
M.
Kaupp
,
S.
Lochbrunner
,
H. -M.
Zhao
,
J.
Pfister
,
F.
Würthner
, and
B.
Engels
,
J. Am. Chem. Soc.
130
,
12858
(
2008
).
45.
M.
Pitoňák
,
P.
Neogrády
,
J.
Černý
,
S.
Grimme
, and
P.
Hobza
,
ChemPhysChem
10
,
282
(
2009
).
46.
Y.
Jung
,
R. C.
Lochan
,
A. D.
Dutoi
, and
M.
Head-Gordon
,
J. Chem. Phys.
121
,
9793
(
2004
).
47.
R.
Lochan
,
Y.
Jung
, and
M.
Head-Gordon
,
J. Phys. Chem. A
109
,
7598
(
2005
).
48.
R. C.
Lochan
and
M.
Head-Gordon
,
J. Chem. Phys.
126
,
164101
(
2007
).
49.
F.
Neese
,
T.
Schwabe
,
S.
Kossmann
,
B.
Schirmer
, and
S.
Grimme
,
J. Chem. Theory Comput.
5
,
3060
(
2009
).
50.
O.
Marchetti
and
H. -J.
Werner
,
J. Phys. Chem. A
113
,
11580
(
2009
).
52.
J. G.
Hill
and
J. A.
Platts
,
J. Chem. Theory Comput.
3
,
80
(
2007
).
53.
R. A.
Distasio
and
M.
Head-Gordon
,
Mol. Phys.
105
,
1073
(
2007
).
54.
S.
Grimme
,
J. Comput. Chem.
24
,
1529
(
2003
).
55.
I.
Hyla-Kryspin
and
S.
Grimme
,
Organometallics
23
,
5581
(
2004
).
56.
T.
Takatani
,
E. G.
Hohenstein
, and
C. D.
Sherrill
,
J. Chem. Phys.
128
,
124111
(
2008
).
57.
S.
Grimme
and
E. I.
Izgorodina
,
Chem. Phys.
305
,
223
(
2004
).
58.
Y.
Rhee
and
M.
Head-Gordon
,
J. Phys. Chem. A
111
,
5314
(
2007
).
59.
A.
Hellweg
,
S. A.
Grün
, and
C.
Hättig
,
Phys. Chem. Chem. Phys.
10
,
4119
(
2008
).
60.
D.
Robinson
and
J. J. W.
McDouall
,
J. Phys. Chem. A
111
,
9815
(
2007
).
61.
G.
Bucher
,
S.
Grimme
,
R.
Huenerbein
,
A. A.
Auer
,
E.
Mucke
,
F.
Köhler
,
J.
Siegwarth
, and
R.
Herges
,
Angew. Chem.
121
,
10156
(
2009
).
62.
J. C.
Sancho-García
and
A. J.
Pérez-Jiménez
,
J. Chem. Phys.
129
,
024103
(
2008
).
63.
S.
Grimme
,
Angew. Chem.
120
,
3478
(
2008
).
64.
S.
Grimme
,
M.
Steinmetz
, and
M.
Korth
,
J. Chem. Theory Comput.
3
,
42
(
2007
).
65.
Á.
Szabados
,
J. Chem. Phys.
125
,
214105
(
2006
).
66.
P.
Goldhammer
and
E.
Feenberg
,
Phys. Rev.
101
,
1233
(
1956
).
67.
68.
A. T.
Amos
,
J. Chem. Phys.
52
,
603
(
1970
).
69.
A.
Szabados
and
P. R.
Surján
,
Int. J. Quantum Chem.
101
,
287
(
2005
).
70.
A.
Szabados
,
Z.
Rolik
,
G.
Toth
, and
P. R.
Surjan
,
J. Chem. Phys.
122
,
114104
(
2005
).
71.
P. R.
Surján
and
A.
Szabados
, in
Fundamental World of Quantum Chemistry: A Tribute to the Memory of Per-Olov Löwdin
, edited by
E. J.
Brändas
and
E. S.
Kryachko
(
Kluwer
,
Dordrecht
,
2004
), Vol.
III
, pp.
129
185
.
72.
H. A.
Witek
,
H.
Nakano
, and
K.
Hirao
,
J. Chem. Phys.
118
,
8197
(
2003
).
73.
P. R.
Surjan
and
A.
Szabados
,
J. Chem. Phys.
112
,
4438
(
2000
).
74.
C.
Schmidt
,
M.
Warken
, and
N. C.
Handy
,
Chem. Phys. Lett.
211
,
272
(
1993
).
75.
K.
Dietz
,
C.
Schmidt
,
M.
Warken
, and
B. A.
Hess
,
J. Phys. B
26
,
1885
(
1993
).
76.
K.
Dietz
,
C.
Schmidt
,
M.
Warken
, and
B. A.
Hess
,
J. Phys. B
26
,
1897
(
1993
).
77.
K.
Dietz
,
C.
Schmidt
,
M.
Warken
, and
B. A.
Hess
,
Chem. Phys. Lett.
207
,
281
(
1993
).
78.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
(
McGraw-Hill
,
New York
,
1989
).
79.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic Structure Theory: Energy and Wave Functions
(
Wiley
,
Chichester
,
2000
).
80.
R. F.
Fink
,
Chem. Phys. Lett.
428
,
461
(
2006
).
82.
Y.
Jung
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
2831
(
2006
).
83.
R.
Ahlrichs
,
Comput. Phys. Commun.
17
,
31
(
1979
).
84.
See supplementary material at http://dx.doi.org/10.1063/1.3503041 for further details about the spin-contamination of Sz2-MP theory, the geometrical structures of the investigated model systems, the numerical data corresponding to Figs. 3–5, as well as the corresponding information for the HF molecule.
85.
J.
Wasilewski
,
Int. J. Quantum Chem.
39
,
649
(
1991
).
86.
J.
Wasilewski
,
Int. J. Quantum Chem.
36
,
503
(
1989
).
87.
R.
McWeeny
,
Methods of Molecular Quantum Mechanics
, 2nd ed. (
Academic
,
London
,
1992
).
88.
P. J.
Knowles
,
K.
Somasundram
,
N. C.
Handy
, and
K.
Hirao
,
Chem. Phys. Lett.
113
,
8
(
1985
).
89.
P.
Pulay
and
S.
Saebo
,
Theor. Chim. Acta
69
,
357
(
1986
).
90.
P. S.
Epstein
,
Phys. Rev.
28
,
695
(
1926
).
91.
R. K.
Nesbet
,
Proc. R. Soc. London, Ser. A
230
,
312
(
1955
).
92.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
93.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
94.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
95.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
96.
C. W.
Bauschlicher
, Jr.
and
P. R.
Taylor
,
J. Chem. Phys.
85
,
6510
(
1986
).
97.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
98.
Á.
Szabados
and
P. R.
Surján
,
Chem. Phys. Lett.
308
,
303
(
1999
).
99.
P.
Surján
,
Z.
Rolik
,
A.
Szabados
, and
D.
Köhalmi
,
Ann. Phys.
13
,
223
(
2004
).
100.
O.
Parisel
and
Y.
Ellinger
,
Chem. Phys.
189
,
1
(
1994
).
101.
C.
Murray
and
E. R.
Davidson
,
Int. J. Quantum Chem.
43
,
755
(
1992
).
102.
T.
Kato
,
Commun. Pure Appl. Math.
10
,
151
(
1957
).
103.
P. J.
Reynolds
,
D. M.
Ceperley
,
B. J.
Alder
, and
W. A.
Lester
,
J. Chem. Phys.
77
,
5593
(
1982
).
104.
Z.
Sun
,
P.
Reynolds
,
R.
Owen
, and
W.
Lester
,
Theor. Chim. Acta
75
,
353
(
1989
).
105.
W.
Klopper
,
J. Chem. Phys.
115
,
761
(
2001
).

Supplementary Material

You do not currently have access to this content.