Segmented contracted basis sets for 4d, 5d, 5s, and 6s elements of split (double zeta) valence to quadruple zeta valence quality optimized for Dirac–Fock effective core potentials (ECPs) are presented. They were obtained from previous bases optimized for Wood–Boring ECPs by comparably small modifications and reoptimizations. Additionally extensions for two-component self-consistent-field treatments accounting for spin-orbit (SO) coupling were designed and optimized. Reliability for chemical applications was assessed by comparing results to those obtained with a very large (19s16p17d7f6g) reference basis for a set of more than 80 representatively chosen 5s-5d compounds. Moreover, the effect of different types of ECPs and that of the SO-coupling at the basis set limit of density functional theory is documented for the above set of molecules extended by 40 5p-6p compounds.

1.
See supplementary material at http://dx.doi.org/10.1063/1.3495681 for (a) all dhf-bases for s- and d-elements presented in this work, (b) atomic energies (BP86) for dhf-SV(P), dhf-TZVP, and dhf-QZVPP bases at one-component level as well as for dhf-TZVP-2c and dhf-QZVPP-2c bases at two-component level, (c) coordinates, total energies, and HOMO-LUMO gaps of all molecules of the test set using DF ECPs in one- and two-component treatments (BP86) together with the reference basis sets, (d) differences to the reference basis results for each property, molecule, and basis, (e) results for different polarization sets for the alkaline (earth) metals (extended version of Table II), (f) comparison of one- and two-component BP86/reference basis set atomization energies with experimental data (as far as available), and (g) Tables S1 (overview over WB and DF ECPs plus bases), S2 (effects of polarization functions for Ba and Sr), and S3 (effects of h-functions for d-elements).
2.
D.
Andrae
,
U.
Häussermann
,
M.
Dolg
,
H.
Stoll
, and
H.
Preuss
,
Theor. Chim. Acta
77
,
123
(
1990
).
3.
T.
Leininger
,
A.
Nicklass
,
W.
Küchle
,
H.
Stoll
,
M.
Dolg
, and
A.
Bergner
,
Chem. Phys. Lett.
255
,
274
(
1996
).
4.
M.
Kaupp
,
P. R.
Schleyer
,
H.
Stoll
, and
H.
Preuss
,
J. Chem. Phys.
94
,
1360
(
1991
).
5.
A.
Bergner
,
M.
Dolg
,
W.
Küchle
,
H.
Stoll
, and
H.
Preuss
,
Mol. Phys.
80
,
1431
(
1993
).
6.
W.
Küchle
,
M.
Dolg
,
H.
Stoll
, and
H.
Preuss
,
Mol. Phys.
74
,
1245
(
1991
).
7.
K.
Eichkorn
,
F.
Weigend
,
O.
Treutler
, and
R.
Ahlrichs
,
Theor. Chem. Acc.
97
,
119
(
1997
).
8.
B.
Metz
,
H.
Stoll
, and
M.
Dolg
,
J. Chem. Phys.
113
,
2563
(
2000
).
9.
K. A.
Peterson
,
D.
Figgen
,
E.
Goll
,
H.
Stoll
, and
M.
Dolg
,
J. Chem. Phys.
119
,
11113
(
2003
).
10.
D.
Figgen
,
G.
Rauhut
,
M.
Dolg
, and
H.
Stoll
,
Chem. Phys.
311
,
227
(
2005
).
11.
K. A.
Peterson
,
D.
Figgen
,
M.
Dolg
, and
H.
Stoll
,
J. Chem. Phys.
126
,
124101
(
2007
).
12.
D.
Figgen
,
K. A.
Peterson
,
M.
Dolg
, and
H.
Stoll
,
J. Chem. Phys.
130
,
164108
(
2009
).
13.
I. S.
Lim
,
P.
Schwerdtfeger
,
B.
Metz
, and
H.
Stoll
,
J. Chem. Phys.
122
,
104103
(
2005
).
14.
I. S.
Lim
,
H.
Stoll
, and
P.
Schwerdtfeger
,
J. Chem. Phys.
124
,
034107
(
2006
).
15.
K. A.
Peterson
,
J. Chem. Phys.
119
,
11099
(
2003
).
16.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
17.
K. A.
Peterson
,
B. C.
Shepler
,
D.
Figgen
, and
H.
Stoll
,
J. Phys. Chem. A
110
,
13877
(
2006
).
18.
M. K.
Armbruster
,
W.
Klopper
, and
F.
Weigend
,
Phys. Chem. Chem. Phys.
8
,
4862
(
2006
).
19.
The molecular test set contains the following compounds: BaF, BaF2, BaH2, BaO, BaS, CsF, CsH, CsO, RbF, RbH, RbO, SrF, SrF2, SrH2, SrO, SrS, Ag2, AgCl, CdF2, CdMe2, Mo(CO)6, MoF3, MoH, MoO2, MoO3, NbF3, NbO, NbO2, NbO2F, Pd(CO)4, PdF, RhF, RhF4, RhF6, RhO, Ru(CO)5, RuF, RuO, RuO2, RuO4, Tc2O7, TcO, TcO3F, YF, YF3, YO, ZrF, ZrF3, ZrO, ZrO2, Au2, Au3, AuCl, AuCl3, HfF, HfF3, HfO, HfO2, Hg2Cl2, HgF2, HgMe2, IrF6, Os(CO)5, OsO2, OsO3, OsO4, OsOF5, Pt(CO)4, PtO, PtO2, ReH, ReO2, ReO3, ReO3F, TaF, TaF3, TaO2F, W(CO)6, WF3, WH, WO, WO2, WO3, I2, ICl, IH, IO4, InCl, InCl3, InH, InH3, InO, SbCl6, SbF, SbF3, SbH3, SbO2, SnF3, SnH4, SnO, SnO2, TeF3, TeH2, TeO, TeO2, BiCl6, At2, Bi4, BiCl6, BiF, BiF3, BiH3, BiO2, PbF3, PbH4, PbO, PbO2, PoO, PoO2, TlCl, TlCl3, TlH, TlH3, and TlO.
20.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
21.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
22.
The factors for Rb/Sr/Y/Zr/Nb/Mo/Tc/Ru/Rh/Pd/Ag/Cd/In/Sn/Sb/Te/I/Xe are 0.62/0.75/0.89/0.98/1.05/1.15/1.23/1.32/1.41/1.28/1.41/0.9/1.4/1.3/1.05/1.12/1.25/1.31, for Cs/Ba/Hf/Ta/W/Re/Os/Ir/Pt/Au/Hg/Tl/Pb/Bi/Po/At/Rn are 0.72/0.83/1.03/1.04/1.10/1.15/1.19/1.23/1.28/1.32/1.29/1.24/1.28/1.32/1.35/1.39/1.43.
23.
F.
Weigend
,
F.
Furche
, and
R.
Ahlrichs
,
J. Chem. Phys.
119
,
12753
(
2003
).
24.
H.
Stoll
and
P.
Schwerdtfeger
(personal communication).
25.
M. K.
Armbruster
,
F.
Weigend
,
C.
van Wüllen
, and
W.
Klopper
,
Phys. Chem. Chem. Phys.
10
,
1748
(
2008
).
26.
A.
Baldes
and
F.
Weigend
(unpublished).
28.
D.
Darwent
,
Natl. Stand. Ref. Data Ser. (U.S., Natl. Bur. Stand.)
31
,
26
(
1970
).
29.
BaF, BaF2, BaO, BaS, CsF, CsO, RbF, SrF, SrF2, SrO, SrS, I2, ICl, IH, InCl, InH, InO, SnO, PbO, TlCl, Ag2, AgCl, MoO2, MoO3, ZrO, Au2, AuCl, HfO, WO, WO2, WO3.

Supplementary Material

You do not currently have access to this content.