The Kohn–Sham equations with constrained electron density are extended to hybrid exchange-correlation (XC) functionals. We derive the frozen density embedding generalized Kohn–Sham (FDE-GKS) scheme which allows to treat the nonlocal exact-exchange in the subsystems. For practical calculations we propose an approximated version of the FDE-GKS in which the nonadditive exchange potential is computed at a semilocal level. The proposed method is applied to compute the ground-state electronic properties of small test systems and selected DNA base pairs. The results of calculations employing the hierarchy of XC functionals BLYP/B3LYP/BHLYP and PBE/PBE0 are presented, in order to analyze the effect of nonlocal exchange contributions, and compared with reference coupled-cluster singles and doubles results. We find that the use of hybrid functionals leads to a significant improvement in the description of ground-state electronic properties of the investigated systems. The semilocal version of the FDE-GKS correctly reproduces the dipole and the electron density distribution of the exact GKS supramolecular system, with errors smaller than the ones obtained using conventional semilocal XC functionals.

1.
S.
Goedecker
,
Rev. Mod. Phys.
71
,
1085
(
1999
).
2.
M.
Challacombe
,
J. Chem. Phys.
110
,
2332
(
1999
).
3.
G.
Scuseria
,
J. Phys. Chem. A
103
,
4782
(
1999
).
4.
P.
Sałek
,
S.
Høst
,
L.
Thøgersen
,
P.
Jørgensen
,
P.
Manninen
,
J.
Olsen
,
B.
Jansík
,
S.
Reine
,
F. P.
Pawłowski
,
E.
Tellgren
,
T.
Helgakr
, and
S.
Coriani
,
J. Chem. Phys.
126
,
114110
(
2007
).
5.
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
6.
U.
Singh
and
P.
Kollman
,
J. Comput. Chem.
7
,
718
(
1986
).
7.
M. J.
Field
,
P. A.
Bash
, and
M.
Karplus
,
J. Comput. Chem.
11
,
700
(
1990
).
8.
F.
Maseras
and
K.
Morokuma
,
J. Comput. Chem.
16
,
1170
(
1995
).
9.
R.
Friesner
and
V.
Guallar
,
Annu. Rev. Phys. Chem.
56
,
389
(
2005
).
10.
H.
Lin
and
D. G.
Truhlar
,
Theor. Chem. Acc.
117
,
185
(
2007
).
11.
M.
Svensson
,
S.
Humbel
,
R. D. J.
Froese
,
T.
Matsubara
,
S.
Sieber
, and
K.
Morokuma
,
J. Phys. Chem.
100
,
19357
(
1996
).
12.
S.
Dapprich
,
I.
Komaromi
,
K.
Byum
,
K.
Morokuma
, and
M.
Frisch
,
J. Mol. Struct.: THEOCHEM
461–462
,
1
(
1999
).
15.
W.
Yang
and
T. -S.
Lee
,
J. Chem. Phys.
103
,
5674
(
1995
).
16.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
1989
).
17.
R. M.
Dreizler
and
E. K. U.
Gross
,
Density Functional Theory
(
Springer
,
Heidelberg
,
1990
).
18.
T.
Akama
,
M.
Kobayashi
, and
H.
Nakai
,
J. Comput. Chem.
28
,
2003
(
2007
).
19.
M.
Kobayashi
,
Y.
Imamura
, and
H.
Nakai
,
J. Chem. Phys.
127
,
074103
(
2007
).
20.
M.
Kobayashi
and
H.
Nakai
,
J. Chem. Phys.
131
,
114108
(
2009
).
21.
K.
Kitaura
,
E.
Ikeo
,
T.
Asada
,
T.
Nakano
, and
M.
Uebayasi
,
Chem. Phys. Lett.
313
,
701
(
1999
).
22.
T. K. T.
Nakano
,
T.
Sato
,
Y.
Akiyama
,
M.
Uebayasi
, and
K.
Kitaura
,
Chem. Phys. Lett.
318
,
614
(
2000
).
23.
D. G.
Fedorov
and
K.
Kitaura
,
J. Chem. Phys.
120
,
6832
(
2004
).
24.
S.
Sugiki
,
N.
Kurita
,
Y.
Sengoku
, and
H.
Sekino
,
Chem. Phys. Lett.
382
,
611
(
2003
).
25.
D.
Fedorov
and
K.
Kitaura
,
Chem. Phys. Lett.
389
,
129
(
2004
).
26.
D. G.
Fedorov
and
K.
Kitaura
,
J. Chem. Phys.
121
,
2483
(
2004
).
27.
D. G.
Fedorov
and
K.
Kitaura
,
J. Chem. Phys.
122
,
054108
(
2005
).
28.
D. G.
Fedorov
and
K.
Kitaura
,
J. Chem. Phys.
123
,
134103
(
2005
).
29.
L. -W.
Wang
,
Z.
Zhao
, and
J.
Meza
,
Phys. Rev. B
77
,
165113
(
2008
).
30.
Z.
Zhao
,
J.
Meza
, and
L. -W.
Wang
,
J. Phys.: Condens. Matter
20
,
294203
(
2008
).
31.
J.
He
,
C. D.
Paola
, and
L.
Kantorovich
,
J. Chem. Phys.
130
,
144104
(
2009
).
32.
M.
Gordon
,
J.
Mullin
,
S. R.
Pruitt
,
L. B.
Roskop
,
L. V.
Slipchenko
, and
J. A.
Boatz
,
J. Phys. Chem. B
113
,
9646
(
2009
).
33.
P.
Elliott
,
M. H.
Cohen
,
A.
Wasserman
, and
K.
Burke
,
J. Chem. Theory Comput.
5
,
827
(
2009
).
34.
G.
Senatore
and
K. R.
Subbaswamy
,
Phys. Rev. B
34
,
5754
(
1986
).
35.
36.
T. A.
Wesolowski
and
A.
Warshel
,
J. Phys. Chem.
97
,
8050
(
1993
).
37.
T. A.
Wesołowski
, in
Chemistry: Reviews of Current Trends
, edited by
J.
Leszczynski
(
World Scientific
,
Singapore
,
2006
), Vol.
10
, p.
1
.
38.
J.
Neugebauer
,
M. J.
Louwerse
,
E. J.
Baerends
, and
T. A.
Wesolowski
,
J. Chem. Phys.
122
,
094115
(
2005
).
39.
J.
Neugebauer
,
C. R.
Jacob
,
T. A.
Wesolowski
, and
E. J.
Baerends
,
J. Phys. Chem. A
109
,
7805
(
2005
).
40.
C.
Jacob
,
J.
Neugebauer
,
L.
Jensen
, and
L.
Vissher
,
Phys. Chem. Chem. Phys.
8
,
2349
(
2006
).
41.
M. E.
Casida
and
T. A.
Wesolowski
,
Int. J. Quantum Chem.
96
,
577
(
2004
).
42.
J.
Neugebauer
,
J. Chem. Phys.
126
,
134116
(
2007
).
43.
A.
Gomes
,
C. R.
Jacob
, and
L.
Visscher
,
Phys. Chem. Chem. Phys.
10
,
5353
(
2008
).
44.
R.
Kevorkyants
,
M.
Dulak
, and
T. A.
Wesolowski
,
J. Chem. Phys.
124
,
024104
(
2006
).
45.
T. A.
Wesolowski
,
P. -Y.
Morgantini
, and
J.
Weber
,
J. Chem. Phys.
116
,
6411
(
2002
).
46.
T. A.
Wesolowski
,
J. Chem. Phys.
106
,
8516
(
1997
).
47.
M.
Dułak
,
J. W.
Kamiński
, and
T. A.
Wesolowski
,
J. Chem. Theory Comput.
3
,
735
(
2007
).
48.
M.
Iannuzzi
,
B.
Kirchner
, and
J.
Hutter
,
Chem. Phys. Lett.
421
,
16
(
2006
).
49.
M.
Hodak
,
W.
Lu
, and
J.
Bernholc
,
J. Chem. Phys.
128
,
014101
(
2008
).
51.
P. A. M.
Dirac
,
Proc. R. Soc. London, Ser. A
123
,
714
(
1929
).
52.
53.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
54.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
55.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
56.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
57.
T. A.
Wesolowski
,
H.
Chermette
, and
J.
Weber
,
J. Chem. Phys.
105
,
9182
(
1996
).
58.
T. A.
Wesolowski
and
J.
Weber
,
Int. J. Quantum Chem.
61
,
303
(
1997
).
59.
S. J. A.
van Gisbergen
,
P. R. T.
Schipper
,
O. V.
Gritsenko
,
E. J.
Baerends
,
J. G.
Snijders
,
B.
Champagne
, and
B.
Kirtman
,
Phys. Rev. Lett.
83
,
694
(
1999
).
60.
B.
Champagne
,
E. A.
Perpete
,
D.
Jacquemin
,
S. J. A.
van Gisbergen
,
E. J.
Baerends
,
C.
Soubra-Ghaoui
,
K. A.
Robins
, and
B.
Kirtman
,
J. Phys. Chem. A
104
,
4755
(
2000
).
61.
T. A.
Wesolowski
and
F.
Tran
,
J. Chem. Phys.
118
,
2072
(
2003
).
62.
C. R.
Jacob
,
T. A.
Wesolowski
, and
L.
Visscher
,
J. Chem. Phys.
123
,
174104
(
2005
).
63.
Y.
Zhao
,
N. E.
Schultz
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
2
,
364
(
2006
).
64.
M.
Piacenza
,
S.
D’Agostino
,
E.
Fabiano
, and
F.
Della Sala
,
Phys. Rev. B
80
,
153101
(
2009
).
65.
P. R. T.
Schipper
,
O. V.
Gritsenko
,
S. J. A.
van Gisbergen
, and
E. J.
Baerends
,
J. Chem. Phys.
112
,
1344
(
2000
).
66.
F. A.
Bulat
,
A.
Toro-Labbé
,
B.
Champagne
,
B.
Kirtman
, and
W.
Yang
,
J. Chem. Phys.
123
,
014319
(
2005
).
67.
F.
Della Sala
,
E.
Fabiano
,
S.
Laricchia
,
S.
D’Agostino
, and
M.
Piacenza
,
Int. J. Quantum Chem.
110
,
2162
(
2010
).
68.
N.
Govind
,
Y. A.
Wang
,
A. J. R.
da Silva
, and
E. A.
Carter
,
Chem. Phys. Lett.
295
,
129
(
1998
).
69.
N.
Govind
,
Y. A.
Wang
, and
E. A.
Carter
,
J. Chem. Phys.
110
,
7677
(
1999
).
70.
P.
Huang
and
E. A.
Carter
,
J. Chem. Phys.
125
,
084102
(
2006
).
71.
T.
Klüner
,
N.
Govind
,
Y. A.
Wang
, and
E. A.
Carter
,
Phys. Rev. Lett.
86
,
5954
(
2001
).
72.
T.
Klüner
,
N.
Govind
,
Y. A.
Wang
, and
E. A.
Carter
,
J. Chem. Phys.
116
,
42
(
2002
).
73.
T. A.
Wesołowski
,
Phys. Rev. A
77
,
012504
(
2008
).
74.
K.
Pernal
and
T. A.
Wesolowski
,
Int. J. Quantum Chem.
109
,
2520
(
2009
).
75.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
76.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
77.
A.
Seidl
,
A.
Görling
,
P.
Vogl
,
J. A.
Majewski
, and
M.
Levy
,
Phys. Rev. B
53
,
3764
(
1996
).
78.
Y. A.
Bernard
,
M.
Dulak
,
W.
Kamiński
, and
T. A.
Wesolowski
,
J. Phys. A: Math. Theor.
41
,
055302
(
2008
).
79.
A. W.
Götz
,
S. M.
Beyhan
, and
L.
Visscher
,
J. Chem. Theory Comput.
5
,
3161
(
2009
).
80.
F.
Tran
and
T. A.
Wesoloski
,
Int. J. Quantum Chem.
89
,
441
(
2002
).
81.
S.
Kümmel
and
L.
Kronik
,
Rev. Mod. Phys.
80
,
3
(
2008
).
82.
J. B.
Krieger
,
Y.
Li
, and
G. J.
Iafrate
,
Phys. Rev. A
45
,
101
(
1992
).
83.
O. V.
Gritsenko
and
E. J.
Baerends
,
Phys. Rev. A
64
,
042506
(
2001
).
84.
F.
Della Sala
and
A.
Görling
,
J. Chem. Phys.
115
,
5718
(
2001
).
85.
Q.
Zhao
,
R. C.
Morrison
, and
R. G.
Parr
,
Phys. Rev. A
50
,
238
(
1995
).
86.
Q.
Wu
and
W.
Yang
,
J. Chem. Phys.
118
,
2498
(
2003
).
87.
O.
Roncero
,
M. P.
de Lara-Castells
,
P.
Villarreal
,
F.
Flores
,
J.
Ortega
,
M.
Paniagua
, and
A.
Aguado
,
J. Chem. Phys.
129
,
184104
(
2008
).
88.
O.
Roncero
,
A.
Zanchet
,
P.
Villarreal
, and
A.
Aguado
,
J. Chem. Phys.
131
,
234110
(
2009
).
89.
S.
Fux
,
C. R.
Jacob
,
J.
Neugebauer
,
L.
Visscher
, and
M.
Reiher
,
J. Chem. Phys.
132
,
164101
(
2010
).
90.
A.
Heßelmann
,
A. W.
Götz
,
F.
Della Sala
, and
A.
Görling
,
J. Chem. Phys.
127
,
054102
(
2007
).
91.
N.
March
and
R.
Santamaria
,
Int. J. Quantum Chem.
39
,
585
(
1991
).
92.
H.
Lee
,
C.
Lee
, and
R. G.
Parr
,
Phys. Rev. A
44
,
768
(
1991
).
93.
See http://www.turbomole.com for TURBOMOLE V6, 2009, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007.
94.
T. A.
Wesolowski
and
A.
Warshel
,
Chem. Phys. Lett.
248
,
71
(
1996
).
95.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
96.
See supplementary material at http://dx.doi.org/10.1063/1.3494537 for the a Table with the LC94 results.
97.
A.
Lembarki
and
H.
Chermette
,
Phys. Rev. A
50
,
5328
(
1994
).
98.
P.
Jurečka
,
J.
Sponer
,
J.
Cerny
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
(
2006
).
99.
M.
Etinski
and
C. M.
Marian
,
Phys. Chem. Chem. Phys.
12
,
4915
(
2010
).
100.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
(
1998
).
101.
C. R.
Jacob
and
L.
Visscher
,
J. Chem. Phys.
128
,
155102
(
2008
).
102.
K.
Kiewisch
,
G.
Eickerling
,
M.
Reiher
, and
J.
Neugebauer
,
J. Chem. Phys.
128
,
044114
(
2008
).
103.
N.
Govind
,
P.
Sushko
,
W.
Hess
,
M.
Valiev
, and
K.
Kowalski
,
Chem. Phys. Lett.
470
,
353
(
2009
).
104.
J. I.
Rodríguez
,
A. M.
Köster
,
P. W.
Ayers
,
A.
Santos-Valle
,
A.
Vela
, and
G. J.
Merino
,
J. Comput. Chem.
30
,
1082
(
2009
).
105.
M.
Dułak
and
T. A.
Wesolowski
,
J. Mol. Model.
13
,
631
(
2007
).
106.
C. R.
Jacob
,
S. M.
Beyhan
, and
L.
Visscher
,
J. Chem. Phys.
126
,
234116
(
2007
).
107.
M.
Dułak
and
T. A.
Wesolowski
,
J. Chem. Phys.
124
,
164101
(
2006
).
108.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
109.
B.
Champagne
,
E. A.
Perpete
,
S. J. A.
van Gisbergen
,
E. J.
Baerends
,
J.
Snijders
,
C.
Soubra-Ghaoui
,
K. A.
Robins
, and
B.
Kirtman
,
J. Chem. Phys.
109
,
10489
(
1998
).

Supplementary Material

You do not currently have access to this content.