Actin polymerization is coupled to the hydrolysis of adenosine triphosphate (ATP) into adenosine diphosphate (ADP) and inorganic phosphate (Pi). Therefore, each protomer within an actin filament can attain three different nucleotide states corresponding to bound ATP, ADP/Pi, and ADP. These protomer states form spatial patterns on the growing (or shrinking) filaments. Using Brownian dynamics simulations, the growth behavior of long filaments is studied, together with the associated protomer patterns, as a function of ATP-actin monomer concentration, CT, within the surrounding solution. For concentrations close to the critical concentration CT=CT,cr, the filaments undergo treadmilling, i.e., they grow at the barbed and shrink at the pointed end, which leads to directed translational motion of the whole filament. The corresponding nonequilibrium states are characterized by several global fluxes and by spatial density and flux profiles along the filaments. We focus on a certain set of transition rates as deduced from in vitro experiments and find that the associated treadmilling (or turnover) rate is about 0.08 monomers per second.

1.
D.
Bray
,
Cell Movements
(
Garland
,
New York
,
2001
).
2.
H.
Lodish
,
A.
Berk
,
C. A.
Kaiser
,
M.
Krieger
,
M. P.
Scott
,
A.
Bretscher
,
H.
Ploegh
, and
P.
Matsudaira
,
Molecular Cell Biology
, 6th ed. (
Freeman
,
San Francisco
,
2007
).
3.
D.
Pantaloni
,
C. L.
Clainche
, and
M. F.
Carlier
,
Science
292
,
1502
(
2001
).
4.
T. D.
Pollard
and
G. G.
Borisy
,
Cell
112
,
453
(
2003
).
5.
T. D.
Pollard
and
A. G.
Weeds
,
FEBS Lett.
170
,
94
(
1984
).
6.
M. F.
Carlier
and
D.
Pantaloni
,
Biochemistry
25
,
7789
(
1986
).
7.
T. D.
Pollard
,
J. Cell Biol.
103
,
2747
(
1986
).
8.
E. D.
Korn
,
M. F.
Carlier
, and
D.
Pantaloni
,
Science
238
,
638
(
1987
).
10.
Note that the term “critical concentration,” which is standard terminology in the research field of actin polymerization, does not imply any critical point corresponding to a continuous phase transition.
11.
A.
van Oudenaarden
and
J. A.
Theriot
,
Nat. Cell Biol.
1
,
493
(
1999
);
[PubMed]
J.
van der Gucht
,
E.
Paluch
,
J.
Plastino
, and
C.
Sykes
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
7847
(
2005
).
[PubMed]
12.
I.
Fujiwara
,
S.
Takahashi
,
H.
Tadakuma
,
T.
Funatsu
, and
S.
Ishiwata
,
Nat. Cell Biol.
4
,
666
(
2002
).
13.
D.
Pantaloni
,
T.
Hill
,
M. -F.
Carlier
, and
E.
Korn
,
Proc. Natl. Acad. Sci. U.S.A.
82
,
7207
(
1985
).
14.
A.
Mogilner
and
G.
Oster
,
Biophys. J.
71
,
3030
(
1996
);
[PubMed]
A.
Mogilner
and
G.
Oster
,
Biophys. J.
84
,
1591
(
2003
);
[PubMed]
A.
Mogilner
and
G.
Oster
,
Science
302
,
1340
(
2003
).
[PubMed]
15.
M.
Bindschadler
,
E. A.
Osborn
,
C. F.
Dewey
, and
J. L.
McGrath
,
Biophys. J.
86
,
2720
(
2004
).
16.
E. B.
Stukalin
and
A. B.
Kolomeisky
,
Biophys. J.
90
,
2673
(
2006
).
17.
D.
Vavylonis
,
Q. B.
Yang
, and
B. O.
Shaughnessy
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
8543
(
2005
).
18.
J.
Fass
,
C.
Pak
,
J.
Bamburg
, and
A.
Mogilner
,
J. Theor. Biol.
252
,
173
(
2008
).
19.
X.
Li
,
Y.
Kierfeld
, and
R.
Lipowsky
,
Phys. Rev. Lett.
103
,
048102
(
2009
).
20.
D.
Sept
,
A. H.
Elcock
, and
J. A.
McCammon
,
J. Mol. Biol.
294
,
1181
(
1999
).
21.
D.
Sept
and
J. A.
McCammon
,
Biophys. J.
81
,
667
(
2001
).
22.
K. K.
Guo
,
J. C.
Shillcock
, and
R.
Lipowsky
,
J. Chem. Phys.
131
,
015102
(
2009
).
23.
I.
Fujiwara
,
D.
Vavylonis
, and
T. D.
Pollard
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
8827
(
2007
).
24.
M. -F.
Carlier
,
D.
Pantaloni
, and
E.
Korn
,
J. Biol. Chem.
262
,
3052
(
1987
).
25.
R.
Melki
,
S.
Fievez
, and
M. -F.
Carlier
,
Biochemistry
35
,
12038
(
1996
).
26.
T.
Ohm
and
A.
Wegner
,
Biochim. Biophys. Acta
1208
,
8
(
1994
).
27.
N. G.
Van Kampen
,
Stochastic Processes in Physics and Chemistry
, 3rd ed. (
Elsevier
,
Amsterdam
,
2007
).
28.
J. L.
McGrath
and
Y.
Tardy
,
Biophys. J.
75
,
2070
(
1998
).
29.
D.
Didry
,
M. F.
Carlier
, and
D.
Pantaloni
,
J. Biol. Chem.
273
,
25602
(
1998
).
You do not currently have access to this content.