A calculation of nuclear momentum distribution of liquid and solid hydrogen fluoride was performed. In both systems, density functional theory generalized gradient approximation functional of Perdew, Burke, and Ernzerhof was used for the calculation: for liquid hydrogen fluoride, using an atom centered basis set for an isolated molecule with optimized geometry, and for solid hydrogen fluoride using plane-wave basis sets on optimized orthorhombic crystal cell. For liquid hydrogen fluoride, a semiclassical approach was adopted with the vibrational contribution to momentum distribution obtained from the density functional theory calculation and translational and rotational contributions calculated classically. Nuclear momentum distribution in the solid hydrogen fluoride was calculated entirely quantum mechanically using phonon dispersion and vibrational density of states calculated in the framework of plane-wave density functional theory. Theoretical results were contrasted with recently obtained results of Compton (deep inelastic) neutron scattering on liquid and solid hydrogen fluoride. In case of liquid hydrogen fluoride, almost a perfect agreement between theory and experiment was achieved within the harmonic Born–Oppenheimer approximation. For the solid system under investigation, the harmonic approximation leads to small (4%) overestimation of the square root of the second moment indicating that neutron Compton scattering technique is sensitive to proton delocalization due to hydrogen bonding in solid hydrogen fluoride.

1.
G. I.
Watson
,
J. Phys.: Condens. Matter
8
,
5955
(
1996
).
2.
C.
Andreani
,
D.
Colognesi
,
J.
Mayers
,
G. F.
Reiter
, and
R.
Senesi
,
Adv. Phys.
54
,
377
(
2005
).
3.
S. E.
McLain
,
C. J.
Benmore
,
J. E.
Siewenie
,
J.
Urquidi
, and
J. F. C.
Turner
,
Angew. Chem., Int. Ed.
43
,
1952
(
2004
).
4.
D. B.
Northrop
,
Acc. Chem. Res.
34
,
790
(
2001
).
6.
C. L.
Perrin
and
J. B.
Nielson
,
Annu. Rev. Phys. Chem.
48
,
511
(
1997
).
7.
M. W.
Johnson
,
E.
Sandor
, and
E.
Arzi
,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
31
,
1998
(
1975
).
8.
J.
Janzen
and
L. S.
Bartell
,
J. Chem. Phys.
50
,
3611
(
1969
).
9.
I. M.
Mills
,
J. Phys. Chem.
88
,
532
(
1984
).
10.
G. C.
Hancock
and
D. G.
Truhlar
,
J. Chem. Phys.
90
,
3498
(
1989
).
11.
A. S.
Pine
,
W. J.
Lafferty
, and
B. J.
Howard
,
J. Chem. Phys.
81
,
2939
(
1984
).
12.
T. A. R. C. A.
Chatzidimitriou-Dreismann
and
B.
Kolaric
,
J. Am. Chem. Soc.
123
,
11945
(
2001
).
13.
N.
Gidopoulos
,
Phys. Rev. B
71
,
054106
(
2005
).
14.
G. F.
Reiter
and
P. M.
Platzman
,
Phys. Rev. B
71
,
054107
(
2005
).
15.
M.
Krzystyniak
and
T.
Abdul-Redah
,
Phys. Rev. B
82
,
064301
(
2010
).
16.
17.
J.
Mayers
,
C.
Andreani
, and
G.
Baciocco
,
Phys. Rev. B
39
,
2022
(
1989
).
18.
20.
C.
Andreani
,
D.
Colognesi
, and
E.
Pace
,
Phys. Rev. B
60
,
10008
(
1999
).
21.
J.
Mayers
and
T.
Abdul-Redah
,
J. Phys.: Condens. Matter
16
,
4811
(
2004
).
22.
G. B.
West
,
Phys. Rep., Phys. Lett.
18
,
263
(
1975
).
23.
A. C.
Evans
,
D. N.
Timms
,
J.
Mayers
, and
S. M.
Bennington
,
Phys. Rev. B
53
,
3023
(
1996
).
24.
S. W.
Lovesey
,
Theory of Neutron Scattering from Condensed Matter
(
Clarendon
,
Oxford
,
1984
).
25.
D.
Colognesi
,
E.
Degiorgi
, and
E.
Pace
,
Physica B
293
,
317
(
2001
).
26.
C.
Andreani
,
E.
Degiorgi
,
R.
Senesi
,
F.
Cilloco
,
D.
Colognesi
,
J.
Mayers
,
M.
Nardone
, and
E.
Pace
,
J. Chem. Phys.
114
,
387
(
2001
).
27.
B. E.
Wilson
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations, the Theory of Infrared and Raman Vibrational Spectra
(
Dover
,
New York
,
1980
).
28.
P. C. H.
Mitchell
,
S. F.
Parker
,
A. J. R.
Cuesta
, and
J.
Tomkinson
,
Vibrational Spectroscopy with Neutrons
(
World Scientific
,
New Jersey, London, Singapore, Beijing, Shanghai, Hong Kong, Taipei, Chennai
,
2005
).
29.
S.
Baroni
,
S.
de Gironcoli
,
A.
dal Corso
, and
P.
Giannozzi
,
Rev. Mod. Phys.
73
,
515
(
2001
).
30.
R.
Senesi
,
D.
Colognesi
,
A.
Pietropaolo
, and
T.
Abdul-Redah
,
Phys. Rev. B
72
,
054119
(
2005
).
31.
M. P.
Andersson
and
P.
Uvdal
,
J. Phys. Chem. A
109
,
2937
(
2005
).
32.
A. P.
Scott
and
L. J.
Radom
,
J. Phys. Chem.
100
,
16502
(
1996
).
33.
J. P.
Merrick
,
D.
Moran
, and
L. J.
Radom
,
J. Phys. Chem. A
111
,
11683
(
2007
).
34.
H.
Herzberg
,
Molecular Spectra and Molecular Structure
(
Van Nostrand
,
Princeton, NJ
,
1945
).
35.
A. J.
Ramirez-Cuesta
,
Comput. Phys. Commun.
157
,
226
(
2004
).
36.
J.
Ochterski
, Vibrational analysis in gaussian, GAUSSIAN 98, white papers,
1999
.
37.
M. D.
Segall
,
P. J. D.
Lindan
,
M. J.
Probert
,
C. J.
Pickard
,
P. J.
Hasnip
,
S. J.
Clark
, and
M. C.
Payne
,
J. Phys.: Condens. Matter
14
,
2717
(
2002
).
38.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
39.
M.
Ernzerhof
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
5029
(
1999
).
40.
J.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
41.
M.
Atoji
and
W.
Lipscomb
,
Acta Crystallogr.
7
,
173
(
1954
).
42.
K.
Refson
,
S. J.
Clark
, and
P. R.
Tulip
,
Phys. Rev. B
73
,
155114
(
2006
).
43.
Y.
Qu
,
X.
Bian
,
H.
Tang
, and
P.
Si
,
J. Mol. Struct.: THEOCHEM
671
,
173
(
2004
).
44.
G. M.
Chaban
and
B.
Gerber
,
Spectrochim. Acta, Part A
58
,
887
(
2001
).
45.
D.
Marx
and
M.
Parrinello
,
Z. Phys. B
95
,
143
(
1994
).
46.
M. E.
Tuckerman
,
J. Chem. Phys.
104
,
5579
(
1996
).
47.
J. A.
Morrone
and
R.
Car
,
Phys. Rev. Lett.
101
,
017801
(
2008
).
48.
J. A.
Morrone
,
L.
Lin
, and
R.
Car
,
J. Chem. Phys.
130
,
204511
(
2009
).
49.
I. E.
Mazets
,
C. A. C.
Dreismann
, and
G.
Kurizki
, in
Decoherence, Entanglement and Information Protection in Complex Quantum Systems
, edited by
V. M.
Akulin
,
A.
Sarfati
,
G.
Kurizki
, and
S.
Pellegrin
(
Springer
,
Dordrecht
,
2005
), Vol.
189
, p.
549
.
You do not currently have access to this content.