Classical molecular dynamics have been carried out in order to study the proton-transfer feasibility in immobilized imidazole arrays, taking into account their applications in new polymer electrolyte membrane fuel cells. The resulting trajectories have been analyzed with respect to the ability of forming hydrogen bonds, considering the angle distribution between the proton donor and acceptor groups. The dependence of the hydrogen-bond network is studied with respect to the variations of temperature, density of imidazole groups, and spacer lengths. According to the results, arrays of alkyl-imidazole molecules with three mobile CH2 groups are the most favorable to a proton-transfer reaction. Regarding the alkyl-imidazole density, no significant difference for the arrays with a spacing of 6 or 7 Å between the alkyl-imidazole molecules could be observed, whereas the 10 Å array presents a lower probability of a proton transfer. The optimal arrangement of the investigated systems is a spacing of 6 Å and a flexible chain length of three CH2 groups. These results confirm previous experimental and simulation analyses.

1.
M.
Schuster
,
K. D.
Kreuer
,
H.
Steininger
, and
J.
Maier
,
Solid State Ionics
179
,
523
(
2008
).
2.
K. D.
Kreuer
,
S. J.
Paddison
,
E.
Spohr
, and
M.
Schuster
,
Chem. Rev. (Washington, D.C.)
104
,
4637
(
2004
).
3.
J.
Weber
,
K. D.
Kreuer
,
J.
Maier
, and
A.
Thomas
,
Adv. Mater. (Weinheim, Ger.)
20
,
2595
(
2008
).
4.
K. D.
Kreuer
,
M.
Schuster
,
B.
Obliers
,
O.
Diat
,
U.
Traub
,
A.
Fuchs
,
U.
Klock
,
S. J.
Paddison
, and
J.
Maier
,
J. Power Sources
178
,
499
(
2008
).
5.
S. J.
Paddison
,
K. D.
Kreuer
, and
J.
Maier
,
Phys. Chem. Chem. Phys.
8
,
4530
(
2006
).
6.
H. G.
Herz
,
K. D.
Kreuer
,
J.
Maier
,
G.
Scharfenberger
,
M. F. H.
Schuster
, and
W. H.
Meyer
,
Electrochim. Acta
48
,
2165
(
2003
).
7.
H.
Steininger
,
M.
Schuster
,
K. D.
Kreuer
, and
J.
Maier
,
Solid State Ionics
177
,
2457
(
2006
).
8.
S.
Beyazyildirim
,
K. D.
Kreuer
,
M.
Schuster
,
A. J.
Bhattacharyya
, and
J.
Maier
,
Adv. Mater. (Weinheim, Ger.)
20
,
1274
(
2008
).
9.
R.
Marschall
,
M.
Sharifi
, and
M.
Wark
,
Microporous Mesoporous Mater.
123
,
21
(
2009
).
10.
W.
Münch
,
K. D.
Kreuer
,
W.
Silvestri
,
J.
Maier
, and
G.
Seifert
,
Solid State Ionics
145
,
437
(
2001
).
11.
P.
Tölle
,
W. L.
Cavalcanti
,
M.
Hoffmann
,
C.
Köhler
, and
T.
Frauenheim
,
Fuel Cells
8
,
236
(
2008
).
12.
S. S.
Jang
,
V.
Molinero
,
T.
Cagın
, and
W. A.
Goddard III
,
J. Phys. Chem. B
108
,
3149
(
2004
).
13.
S. S.
Jang
,
V.
Molinero
,
T.
Cagın
, and
W. A.
Goddard III
,
Abstr. Pap. - Am. Chem. Soc.
226
,
U530
(
2003
).
14.
C. T.
Kresge
,
M. E.
Leonowicz
,
W. J.
Roth
,
J. C.
Vartuli
, and
J. S.
Beck
,
Nature (London)
359
,
710
(
1992
).
15.
R.
Marschall
,
P.
Tölle
,
W. L.
Cavalcanti
,
M.
Wilhelm
,
C.
Köhler
,
T.
Frauenheim
, and
M.
Wark
,
J. Phys. Chem. C
113
,
19218
(
2009
).
16.
M.
Wilhelm
,
M.
Jeske
,
R.
Marschall
,
W. L.
Cavalcanti
,
P.
Tölle
,
C.
Köhler
,
D.
Koch
,
T.
Frauenheim
,
G.
Grathwohl
,
J.
Caro
, and
M.
Wark
,
J. Membr. Sci.
316
,
164
(
2008
).
17.
R.
Marschall
,
I.
Bannat
,
J.
Caro
, and
M.
Wark
,
Microporous Mesoporous Mater.
99
,
190
(
2007
).
18.
R.
Marschall
,
I.
Bannat
,
A.
Feldhoff
,
L. Z.
Wang
,
G. Q.
Lu
, and
M.
Wark
,
Small
5
,
854
(
2009
).
19.
D.
Gomes
,
R.
Marschall
,
S. P.
Nunes
, and
M.
Wark
,
J. Membr. Sci.
322
,
406
(
2008
).
20.
W. L.
Cavalcanti
,
R.
Marschall
,
P.
Tölle
,
C.
Köhler
,
M.
Wark
, and
T.
Frauenheim
,
Fuel Cells
8
,
244
(
2008
).
21.
J. -O.
Joswig
and
G.
Seifert
,
J. Phys. Chem. B
113
,
8475
(
2009
).
22.
J. -O.
Joswig
,
S.
Hazebroucq
, and
G.
Seifert
,
J. Mol. Struct.: THEOCHEM
816
,
119
(
2007
).
23.
E.
Lindahl
,
B.
Hess
, and
D.
van der Spoel
,
J. Mol. Model.
7
,
306
(
2001
).
24.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 03, Revision B.05, Gaussian, Inc., Wallingford, CT,
2004
.
25.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
You do not currently have access to this content.