We use molecular simulation to study the ability of entropy scaling relationships to describe the kinetic properties of two Lennard-Jones dumbbell models. We begin by examining the excess entropy, the key quantity used to correlate dynamic properties within entropy scaling strategies. We compute the thermodynamic excess entropy as well as contributions to the two-body excess entropy stemming from translational and orientational intermolecular correlations. Our results indicate that the total two-body contribution accounts for more than 70% of the thermodynamic excess entropy at all state conditions explored. For the two dumbbell models studied here, the orientational component of the two-body excess entropy dominates at moderate and high fluid densities. We next investigate the relationships between kinetic properties and various contributions to the excess entropy. Four dynamic properties are considered: translational and rotational diffusivities, a characteristic relaxation time for rotational motion, and a collective relaxation time stemming from analysis of the coherent intermediate-scattering function. We find that the thermodynamic excess entropy provides the best metric for describing kinetic properties. For each of the dynamic properties considered, reduced data collapse onto a common curve when expressed as a function of the thermodynamic excess entropy. The likelihood of a two-body contribution to the excess entropy serving as a reliable scaling variable is linked to the extent to which it correlates with the thermodynamic excess entropy. The total two-body term contributes significantly to the excess entropy, and therefore this quantity generally serves as a suitable scaling variable.

1.
Y.
Rosenfeld
,
Phys. Rev. A
15
,
2545
(
1977
).
2.
Y.
Rosenfeld
,
Chem. Phys. Lett.
48
,
467
(
1977
).
3.
R.
Grover
,
W. G.
Hoover
, and
B.
Moran
,
J. Chem. Phys.
83
,
1255
(
1985
).
4.
Y.
Rosenfeld
,
J. Phys.: Condens. Matter
11
,
5415
(
1999
).
5.
M.
Dzugutov
,
Nature (London)
381
,
137
(
1996
).
6.
J.
Mittal
,
J. R.
Errington
, and
T. M.
Truskett
,
Phys. Rev. Lett.
96
,
177804
(
2006
).
7.
J.
Mittal
,
J. R.
Errington
, and
T. M.
Truskett
,
J. Phys. Chem. B
110
,
18147
(
2006
).
8.
J. R.
Errington
,
T. M.
Truskett
, and
J.
Mittal
,
J. Chem. Phys.
125
,
244502
(
2006
).
9.
J.
Mittal
,
J. R.
Errington
, and
T. M.
Truskett
,
J. Chem. Phys.
126
,
244708
(
2007
).
10.
J.
Mittal
,
J. R.
Errington
, and
T. M.
Truskett
,
J. Phys. Chem. B
111
,
10054
(
2007
).
11.
J.
Mittal
,
V. K.
Shen
,
J. R.
Errington
, and
T. M.
Truskett
,
J. Chem. Phys.
127
,
154513
(
2007
).
12.
G.
Goel
,
W. P.
Krekelberg
,
J. R.
Errington
, and
T. M.
Truskett
,
Phys. Rev. Lett.
100
,
106001
(
2008
).
13.
J.
Mittal
,
T. M.
Truskett
,
J. R.
Errington
, and
G.
Hummer
,
Phys. Rev. Lett.
100
,
145901
(
2008
).
14.
W. P.
Krekelberg
,
T.
Kumar
,
J.
Mittal
,
J. R.
Errington
, and
T. M.
Truskett
,
Phys. Rev. E
79
,
031203
(
2009
).
15.
G.
Goel
,
W. P.
Krekelberg
,
M. J.
Pond
,
J.
Mittal
,
V. K.
Shen
,
J. R.
Errington
, and
T. M.
Truskett
,
J. Stat. Mech.: Theory Exp.
2009
,
P04006
.
16.
M. J.
Pond
,
W. P.
Krekelberg
,
V. K.
Shen
,
J. R.
Errington
, and
T. M.
Truskett
,
J. Chem. Phys.
131
,
161101
(
2009
).
17.
W. P.
Krekelberg
,
M. J.
Pond
,
G.
Goel
,
V. K.
Shen
,
J. R.
Errington
, and
T. M.
Truskett
,
Phys. Rev. E
80
,
061205
(
2009
).
18.
J.
Mittal
,
J. R.
Errington
, and
T. M.
Truskett
,
J. Chem. Phys.
132
,
169904
(
2010
).
19.
R.
Chopra
,
T. M.
Truskett
, and
J. R.
Errington
,
J. Phys. Chem. B
114
,
10558
(
2010
).
20.
W. P.
Krekelberg
,
J.
Mittal
,
V.
Ganesan
, and
T. M.
Truskett
,
J. Chem. Phys.
127
,
044502
(
2007
).
21.
W. P.
Krekelberg
,
V.
Ganesan
, and
T. M.
Truskett
,
J. Chem. Phys.
132
,
184503
(
2010
).
22.
E. H.
Abramson
,
Phys. Rev. E
76
,
051203
(
2007
).
23.
E. H.
Abramson
and
H.
West-Foyle
,
Phys. Rev. E
77
,
041202
(
2008
).
24.
Z. N.
Gerek
and
J. R.
Elliott
,
Ind. Eng. Chem. Res.
49
,
3411
(
2010
).
25.
T.
Goel
,
C. N.
Patra
,
T.
Mukherjee
, and
C.
Chakravarty
,
J. Chem. Phys.
129
,
164904
(
2008
).
26.
M.
Agarwal
,
M.
Singh
,
R.
Sharma
,
M. P.
Alam
, and
C.
Chakravarty
,
J. Phys. Chem. B
114
,
6995
(
2010
).
27.
M.
Agarwal
and
C.
Chakravarty
,
Phys. Rev. E
79
,
030202
(
2009
).
28.
M.
Agarwal
,
A.
Ganguly
, and
C.
Chakravarty
,
J. Phys. Chem. B
113
,
15284
(
2009
).
29.
N.
Gnan
,
T. B.
Schrøder
,
U. R.
Pedersen
,
N. P.
Bailey
, and
J. C.
Dyre
,
J. Chem. Phys.
131
,
234504
(
2009
).
30.
R. E.
Nettleton
and
M. S.
Green
,
J. Chem. Phys.
29
,
1365
(
1958
).
31.
H. S.
Green
,
The Molecular Theory of Fluids
(
North-Holland
,
Amsterdam
,
1952
).
32.
H. J.
Raveché
,
J. Chem. Phys.
55
,
2242
(
1971
).
33.
A.
Baranyai
and
D. J.
Evans
,
Phys. Rev. A
40
,
3817
(
1989
).
34.
T.
Lazaridis
and
M.
Karplus
,
J. Chem. Phys.
105
,
4294
(
1996
).
35.
J. -L.
Bretonnet
,
J. Chem. Phys.
117
,
9370
(
2002
).
36.
D.
Costa
,
F.
Saija
, and
P. V.
Giaquinta
,
Chem. Phys. Lett.
283
,
86
(
1998
).
37.
D.
Costa
,
F.
Micali
,
F.
Saija
, and
P. V.
Giaquinta
,
J. Phys. Chem. B
106
,
12297
(
2002
).
38.
E.
Giuffré
,
S.
Prestipino
,
F.
Saija
,
A. M.
Saitta
, and
P. V.
Giaquinta
,
J. Chem. Theory Comput.
6
,
625
(
2010
).
39.
J.
Zielkiewicz
,
J. Phys. Chem. B
112
,
7810
(
2008
).
40.
E. P. A.
Paras
,
C.
Vega
, and
P. A.
Monson
,
Mol. Phys.
77
,
803
(
1992
).
41.
C.
Vega
,
E. P. A.
Paras
, and
P. A.
Monson
,
J. Chem. Phys.
96
,
9060
(
1992
).
42.
K. W.
Wojciechowski
,
A. C.
Branka
, and
D.
Frenkel
,
Physica A
196
,
519
(
1993
).
43.
H. S.
Gulati
and
C. K.
Hall
,
J. Chem. Phys.
107
,
3930
(
1997
).
44.
E. B.
Mock
and
C. F.
Zukoski
,
Langmuir
23
,
8760
(
2007
).
45.
J. R.
Errington
,
J. Chem. Phys.
118
,
9915
(
2003
).
46.
J. R.
Errington
,
Phys. Rev. E
67
,
012102
(
2003
).
47.
A. P.
Lyubartsev
,
A. A.
Martsinovskii
,
S. V.
Shevkunov
, and
P. N.
Vorontsov-Velyaminov
,
J. Chem. Phys.
96
,
1776
(
1992
).
48.
B. A.
Berg
and
T.
Neuhaus
,
Phys. Rev. Lett.
68
,
9
(
1992
).
49.
G. R.
Smith
and
A. D.
Bruce
,
J. Phys. A
28
,
6623
(
1995
).
50.
E. C.
Cichowski
,
T. R.
Schmidt
, and
J. R.
Errington
,
Fluid Phase Equilib.
236
,
58
(
2005
).
51.
J. K.
Singh
and
J. R.
Errington
,
J. Phys. Chem. B
110
,
1369
(
2006
).
52.
J. R.
Errington
and
D. A.
Kofke
,
J. Chem. Phys.
127
,
174709
(
2007
).
53.
S.
Kämmerer
,
W.
Kob
, and
R.
Schilling
,
Phys. Rev. E
56
,
5450
(
1997
).
55.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
56.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
,
J. Chem. Phys.
76
,
637
(
1982
).
57.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulations of Liquids
(
Oxford University Press
,
Oxford
,
1987
).
58.
H. C.
Andersen
,
J. Comput. Phys.
52
,
24
(
1983
).
59.
P. V.
Giaquinta
and
G.
Giunta
,
Physica A
187
,
145
(
1992
).
60.
P. V.
Giaquinta
,
G.
Giunta
, and
S.
Prestipino Giarritta
,
Phys. Rev. A
45
,
R6966
(
1992
).
61.
P. V.
Giaquinta
,
J. Chem. Phys.
130
,
037101
(
2009
).
62.
W. P.
Krekelberg
,
V. K.
Shen
,
J. R.
Errington
, and
T. M.
Truskett
,
J. Chem. Phys.
128
,
161101
(
2008
).
63.
W. P.
Krekelberg
,
V. K.
Shen
,
J. R.
Errington
, and
T. M.
Truskett
,
J. Chem. Phys.
130
,
037102
(
2009
).
64.
J. R.
Errington
and
P. G.
Debenedetti
,
Nature (London)
409
,
318
(
2001
).
65.
Z.
Yan
,
S. V.
Buldyrev
,
N.
Giovambattista
, and
H. E.
Stanley
,
Phys. Rev. Lett.
95
,
130604
(
2005
).
66.
U. R.
Pedersen
,
T.
Christensen
,
T. B.
Schrøder
, and
J. C.
Dyre
,
Phys. Rev. E
77
,
011201
(
2008
).
67.
U. R.
Pedersen
,
N. P.
Bailey
,
T. B.
Schrøder
, and
J. C.
Dyre
,
Phys. Rev. Lett.
100
,
015701
(
2008
).
68.
N. P.
Bailey
,
U. R.
Pedersen
,
N.
Gnan
,
T. B.
Schrøder
, and
J. C.
Dyre
,
J. Chem. Phys.
129
,
184507
(
2008
).
69.
N. P.
Bailey
,
U. R.
Pedersen
,
N.
Gnan
,
T. B.
Schrøder
, and
J. C.
Dyre
,
J. Chem. Phys.
129
,
184508
(
2008
).
70.
T. B.
Schrøder
,
N. P.
Bailey
,
U. R.
Pedersen
,
N.
Gnan
, and
J. C.
Dyre
,
J. Chem. Phys.
131
,
234503
(
2009
).
71.
T. B.
Schrøder
,
U. R.
Pedersen
,
N. P.
Bailey
,
S.
Toxvaerd
, and
J. C.
Dyre
,
Phys. Rev. E
80
,
041502
(
2009
).
You do not currently have access to this content.