We have studied the temperature dependence of the vibrational frequency fluctuation of the antisymmetric stretching mode of N3 in D2O by three-pulse infrared (IR) photon echo experiments. IR pump-probe measurements were also carried out to investigate the population relaxation and the orientational relaxation of the same band. It was found that the time-correlation function (TCF) of the frequency fluctuation of this mode is well described by a biexponential function with a quasistatic term. The faster decay component has a time constant of about 0.1 ps, and the slower component varies from 1.4 to 1.1 ps in the temperature range from 283 to 353 K. This result indicates that liquid dynamics related to the frequency fluctuation are not highly sensitive to temperature. We discuss the relationship between the temperature dependence of the vibrational frequency fluctuation and that of the molecular motion of the system to investigate the molecular origin of the frequency fluctuation of the solute. We compare the temperature dependence of the frequency fluctuation with that of other dynamics such as dielectric relaxation of water. In contrast to the Debye dielectric relaxation time of D2O, the two time constants of the TCF of the frequency fluctuation do not exhibit strong temperature dependence. We propose a simple theoretical model for the frequency fluctuation in solutions based on perturbation theory and the dipole-dipole interaction between the vibrational mode of the solute and the solvent molecules. This model suggests that the neighboring solvent molecules in the vicinity of the solute play an important role in the frequency fluctuation. We suggest that the picosecond component of the frequency fluctuation results from structural fluctuation of the hydrogen-bonding network in water.

1.
D. W.
Oxtoby
,
Adv. Chem. Phys.
40
,
1
(
1979
).
2.
D. W.
Oxtoby
,
Adv. Chem. Phys.
47
,
487
(
1981
).
3.
P. W.
Anderson
,
J. Phys. Soc. Jpn.
9
,
316
(
1954
).
4.
R.
Kubo
,
J. Phys. Soc. Jpn.
9
,
935
(
1954
).
5.
6.
P.
Hamm
,
M.
Lim
, and
R. M.
Hochstrasser
,
Phys. Rev. Lett.
81
,
5326
(
1998
).
7.
K.
Ohta
,
H.
Maekawa
, and
K.
Tominaga
,
J. Phys. Chem. A
108
,
1333
(
2004
).
8.
K.
Ohta
,
H.
Maekawa
, and
K.
Tominaga
,
Chem. Phys. Lett.
386
,
32
(
2004
).
9.
K.
Ohta
and
K.
Tominaga
,
Bull. Chem. Soc. Jpn.
78
,
1581
(
2005
).
10.
M. C.
Asplund
,
M.
Lim
, and
R. M.
Hochstrasser
,
Chem. Phys. Lett.
323
,
269
(
2000
).
11.
P.
Hamm
,
M.
Lim
, and
R. M.
Hochstrasser
, in
Ultrafast Phenomena XI: Proceedings of the 11th International Conference
, edited by
T.
Elsaesser
,
J.
Fujimoto
,
D.
Wiersma
, and
W.
Zinth
(
Springer
,
Berlin
,
1998
), p.
514
.
12.
S.
Li
,
J. R.
Schmidt
,
A.
Piryatinski
,
C. P.
Lawrence
, and
J. L.
Skinner
,
J. Phys. Chem. B
110
,
18933
(
2006
).
14.
B.
Bagchi
and
R.
Biswas
,
Adv. Chem. Phys.
109
,
207
(
1999
).
15.
M.
Banno
,
K.
Ohta
, and
K.
Tominaga
,
J. Phys. Chem. A
112
,
4170
(
2008
).
16.
K.
Ohta
,
H.
Maekawa
,
S.
Saito
, and
K.
Tominaga
,
J. Phys. Chem. A
107
,
5643
(
2003
).
17.
M.
Polak
,
M.
Gruebele
, and
R. J.
Saykally
,
J. Am. Chem. Soc.
109
,
2884
(
1987
).
18.
M.
Li
,
J.
Owrutsky
,
M.
Sarisky
,
J. P.
Culver
,
A.
Yodh
, and
R. M.
Hochstrasser
,
J. Chem. Phys.
98
,
5499
(
1993
).
19.
M.
Lim
,
P.
Hamm
, and
R. M.
Hochstrasser
,
Proc. Natl. Acad. Sci. U.S.A.
95
,
15315
(
1998
).
20.
E. C.
Fulmer
,
F.
Ding
, and
M. T.
Zanni
,
J. Chem. Phys.
122
,
034302
(
2005
).
21.
M.
Lim
and
R. M.
Hochstrasser
,
J. Chem. Phys.
115
,
7629
(
2001
).
22.
J. T.
Fourkas
,
H.
Kawashima
, and
K. A.
Nelson
,
J. Chem. Phys.
103
,
4393
(
1995
).
23.
N.
Matsunaga
and
A.
Nagashima
,
J. Phys. Chem.
12
,
933
(
1983
).
24.
V.
Schettino
and
I. C.
Hisatsune
,
J. Chem. Phys.
52
,
9
(
1970
).
25.
L. H.
Jones
,
J. Chem. Phys.
25
,
1069
(
1956
).
26.
K. J.
Tielrooij
,
C.
Petersen
,
Y. L. A.
Rezus
, and
H. J.
Bakker
,
Chem. Phys. Lett.
471
,
71
(
2009
).
27.
D. E.
Moilanen
,
E. E.
Fenn
,
Y. -S.
Lin
,
J. L.
Skinner
,
B.
Bagchi
, and
M. D.
Fayer
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
5295
(
2008
).
28.
R.
Buchner
,
J.
Barthel
, and
J.
Stauber
,
Chem. Phys. Lett.
306
,
57
(
1999
).
29.
C.
Rønne
and
S. R.
Keiding
,
J. Mol. Liq.
101
,
199
(
2002
).
30.
K.
Winkler
,
J.
Lindner
,
H.
Bürsing
, and
P.
Vöhringer
,
J. Chem. Phys.
113
,
4674
(
2000
).
31.
E.
Lang
and
H. -D.
Lüdemann
,
J. Chem. Phys.
67
,
718
(
1977
).
32.
R.
Ludwig
,
F.
Weinhold
, and
T. C.
Farrar
,
J. Chem. Phys.
103
,
6941
(
1995
).
33.
D.
Laage
and
J. T.
Hynes
,
Science
311
,
832
(
2006
).
34.
A.
Morita
and
S.
Kato
,
J. Chem. Phys.
109
,
5511
(
1998
).
35.
S. H.
Lin
,
J. Chem. Phys.
65
,
1053
(
1976
).
36.
V. M.
Kenkre
,
A.
Tokmakoff
, and
M. D.
Fayer
,
J. Chem. Phys.
101
,
10618
(
1994
).
37.
S.
Li
,
J. R.
Schmidt
, and
J. L.
Skinner
,
J. Chem. Phys.
125
,
244507
(
2006
).
38.
M.
Cho
,
J. -Y.
Yu
,
T.
Joo
,
Y.
Nagasawa
,
S. A.
Passino
, and
G. R.
Fleming
,
J. Phys. Chem.
100
,
11944
(
1996
).
39.
G. R.
Fleming
and
M.
Cho
,
Annu. Rev. Phys. Chem.
47
,
109
(
1996
).
40.
W. P.
de Boeij
,
M. S.
Pshenichnikov
, and
D. A.
Wiersma
,
Chem. Phys. Lett.
253
,
53
(
1996
).
41.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University
,
New York
,
1995
).
42.
D. A.
McQuarrie
,
Statistical Mechanics
(
University Science Book
,
Sausalito, CA
,
2000
).
43.
B.
Bagchi
,
D. W.
Oxtoby
, and
G. R.
Fleming
,
Chem. Phys.
86
,
257
(
1984
).
44.
C. R.
Rønne
,
L.
Thrane
,
P. -O.
Åstrand
,
A.
Wallqvist
,
K. V.
Mikkelsen
, and
S.
Keiding
,
J. Chem. Phys.
107
,
5319
(
1997
).
45.
C.
Rønne
,
P. -O.
Åstrand
, and
S.
Keiding
,
Phys. Rev. Lett.
82
,
2888
(
1999
).
46.
P. S.
Yastremskii
,
J. Struct. Chem.
12
,
483
(
1971
).
47.
H.
Fröhlich
,
Theory of Dielectrics
, 2nd ed. (
Oxford University Press
,
New York
,
1958
).
48.
H.
Yada
,
M.
Nagai
, and
K.
Tanaka
,
Chem. Phys. Lett.
464
,
166
(
2008
).
49.
P.
Dutta
and
K.
Tominaga
,
J. Phys. Chem. A
113
,
8235
(
2009
).
50.
M.
Cho
,
G. R.
Fleming
,
S.
Saito
,
I.
Ohmine
, and
R. M.
Stratt
,
J. Chem. Phys.
100
,
6672
(
1994
).
51.
J.
Stenger
,
D.
Madsen
,
P.
Hamm
,
E. T. J.
Nibbering
, and
T.
Elsaesser
,
Phys. Rev. Lett.
87
,
027401
(
2001
).
52.
J.
Stenger
,
D.
Madsen
,
P.
Hamm
,
E. T. J.
Nibbering
, and
T.
Elsaesser
,
J. Phys. Chem. A
106
,
2341
(
2002
).
53.
J. B.
Asbury
,
T.
Steinel
,
C.
Stromberg
,
K. J.
Gaffney
,
I. R.
Piletic
,
A.
Goun
, and
M. D.
Fayer
,
Phys. Rev. Lett.
91
,
237402
(
2003
).
54.
J. B.
Asbury
,
T.
Steinel
,
C.
Stromberg
,
K. J.
Gaffney
,
I. R.
Piletic
, and
M. D.
Fayer
,
J. Chem. Phys.
119
,
12981
(
2003
).
55.
J. J.
Loparo
,
S. T.
Roberts
, and
A.
Tokmakoff
,
J. Chem. Phys.
125
,
194521
(
2006
).
56.
H. J.
Bakker
and
J. L.
Skinner
,
Chem. Rev. (Washington, D.C.)
110
,
1498
(
2010
).
57.
T.
Steinel
,
J. B.
Asbury
,
S. A.
Corcelli
,
C. P.
Lawrence
,
J. L.
Skinner
, and
M. D.
Fayer
,
Chem. Phys. Lett.
386
,
295
(
2004
).
58.
C. J.
Fecko
,
J. D.
Eaves
,
J. J.
Loparo
,
A.
Tokmakoff
, and
P. L.
Geissler
,
Science
301
,
1698
(
2003
).
59.
C. J.
Fecko
,
J. J.
Loparo
,
S. T.
Roberts
, and
A.
Tokmakoff
,
J. Chem. Phys.
122
,
054506
(
2005
).
60.
J. B.
Asbury
,
T.
Steinel
,
C.
Stromberg
,
S. A.
Corcelli
,
C. P.
Lawrence
, and
J. L.
Skinner
,
J. Phys. Chem. A
108
,
1107
(
2004
).
61.
D.
Kraemer
,
M. L.
Cowan
,
A.
Paarmann
,
N.
Huse
,
E. T. J.
Nibbering
,
T.
Elsaesser
, and
R. J. D.
Miller
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
437
(
2008
).
62.
D. A.
Turton
,
J.
Hunger
,
G.
Hefter
,
R.
Buchner
, and
K.
Wynne
,
J. Chem. Phys.
128
,
161102
(
2008
).
63.
S.
Park
and
M. D.
Fayer
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
16731
(
2007
).
64.
H.
Ishikawa
,
I. J.
Finkelstein
,
S.
Kim
,
K.
Kwak
,
J. K.
Chung
,
K.
Wakasugi
,
A. M.
Massari
, and
M. D.
Fayer
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
16116
(
2007
).
65.
G. M.
Bonner
,
A. R.
Ridley
,
S. K.
Ibrahim
,
C. J.
Pickett
, and
N. T.
Hunt
,
Faraday Discuss.
145
,
429
(
2010
).
66.
H.
Ohtaki
and
T.
Radnai
,
Chem. Rev. (Washington, D.C.)
93
,
1157
(
1993
).
67.
Y.
Marcus
,
Chem. Rev. (Washington, D.C.)
109
,
1346
(
2009
).
68.
S.
Hirai
,
M.
Banno
,
K.
Ohta
,
D. K.
Palit
, and
K.
Tominaga
,
Chem. Phys. Lett.
450
,
44
(
2007
).
69.
J.
Zheng
,
K.
Kwak
,
J. B.
Asbury
,
X.
Chen
,
I.
Piletic
, and
M. D.
Fayer
,
Science
309
,
1338
(
2005
).
70.
Y. S.
Kim
and
R. M.
Hochstrasser
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
11185
(
2005
).
71.
S.
Woutersen
,
Y.
Mu
,
G.
Stock
, and
P.
Hamm
,
Chem. Phys.
266
,
137
(
2001
).
72.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S. J.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
(
1993
).
73.
H.
Yamamoto
and
O.
Matsuoka
,
Bulletin of the University of Electro-Commuications
5
,
23
(
1992
).
74.
T.
Noro
,
M.
Sekiya
, and
T.
Koga
,
Theor. Chem. Acc.
109
,
85
(
2003
).
75.
D. A.
Yarne
,
M. E.
Tuckerman
, and
M. L.
Klein
,
Chem. Phys.
258
,
163
(
2000
).
76.
M.
Ferrario
,
M. L.
Klein
, and
I. R.
McDonald
,
Chem. Phys. Lett.
213
,
537
(
1993
).
77.
M.
Garcia-Viloca
,
K.
Nam
,
C.
Alhambra
, and
J.
Gao
,
J. Phys. Chem. B
108
,
13501
(
2004
).
78.
J. J.
Loparo
,
S. T.
Roberts
, and
A.
Tokmakoff
,
J. Chem. Phys.
125
,
194522
(
2006
).
You do not currently have access to this content.