We report molecular dynamics and reference interaction site model (RISM) theory of methanol and carbon tetrachloride mixtures. Our study encompasses the whole concentration range, by including the pure component limits. We majorly focus on an analysis of partial, total, and concentration-concentration structure factors, and examine in detail the k0 limits of these functions. Simulation results confirm the tendency of methanol to self-associate with the formation of ring structures in the high dilution regime of this species, in agreement with experimental studies and with previous simulations by other authors. This behavior emerges as strongly related to the high nonideality of the mixture, a quantitative estimate of which is provided in terms of concentration fluctuation correlations, through the structure factors examined. The interaggregate correlation distance is also thereby estimated. Finally, the compressibility of the mixture is found in good agreement with experimental data. The RISM predictions are throughout assessed against simulation; the theory describes better the apolar solvent than the alcohol properties. Self-association of methanol is qualitatively reproduced, though this trend is much less marked in comparison with simulation results.

1.
L.
Pauling
,
The Nature of the Chemical Bond
(
Cornell University Press
,
New York
,
1960
).
2.
C. A.
Angell
, in
Hydrogen Bonded Liquids
, edited by
J. C.
Dore
and
J.
Texeira
(
Kluwer Academic
,
Dordrecht
,
1991
).
3.
V. A.
Durov
,
J. Mol. Liq.
103–104
,
41
(
2003
).
4.
Y.
Marcus
,
Introduction to Liquid State Chemistry
(
Wiley
,
New York
,
1977
).
6.
M.
Pieruccini
,
F.
Saija
,
R.
Ponterio
, and
C.
Vasi
,
J. Chem. Phys.
119
,
10771
(
2003
).
7.
D.
Costa
,
G.
Munaò
,
F.
Saija
, and
C.
Caccamo
,
J. Chem. Phys.
127
,
224501
(
2007
).
8.
M.
Pieruccini
and
F.
Saija
,
J. Chem. Phys.
121
,
3191
(
2004
).
9.
B.
Kvamme
,
Phys. Chem. Chem. Phys.
4
,
942
(
2002
).
10.
M.
Musso
,
H.
Torii
,
P.
Ottaviani
,
A.
Asenbaum
, and
M. G.
Giorgini
,
J. Phys. Chem. A
106
,
10152
(
2002
).
11.
J. -E. A.
Otterstedt
and
R. W.
Missen
,
Trans. Faraday Soc.
58
,
879
(
1962
).
12.
M.
Pieruccini
,
F.
Saija
,
C.
Vasi
, and
M.
Musso
,
Chem. Phys. Lett.
382
,
523
(
2003
).
13.
F.
Aliotta
,
M.
Musso
,
R.
Ponterio
,
F.
Saija
, and
G.
Salvato
,
J. Phys. Chem. B
108
,
12972
(
2004
).
14.
F.
Aliotta
,
R.
Ponterio
,
G.
Salvato
, and
M.
Musso
,
J. Phys. Chem. B
108
,
732
(
2004
).
15.
B.
Fazio
,
M.
Pieruccini
, and
C.
Vasi
,
J. Phys. Chem. B
109
,
16075
(
2005
).
16.
17.
R.
Veldhuizen
and
S. W.
de Leeuw
,
J. Chem. Phys.
105
,
2828
(
1996
).
18.
G. C.
Paraskevopoulos
and
R. W.
Missen
,
Trans. Faraday Soc.
58
,
869
(
1962
).
19.
K.
Bloch
and
C. P.
Lawrence
,
J. Phys. Chem. B
114
,
293
(
2010
).
20.
D.
Chandler
and
H. C.
Andersen
,
J. Chem. Phys.
57
,
1930
(
1972
).
21.
D.
Chandler
, in
Studies in Statistical Mechanics
, edited by
J. L.
Lebowitz
and
E. W.
Montroll
(
North Holland
,
Amsterdam
,
1982
), Vol.
8
, p.
275
.
22.
P. A.
Monson
and
G. P.
Morriss
,
Adv. Chem. Phys.
77
,
451
(
1990
).
23.
L. J.
Lowden
and
D.
Chandler
,
J. Chem. Phys.
61
,
5228
(
1974
).
24.
G. N.
Chuev
and
M. V.
Fedorov
,
J. Chem. Phys.
131
,
074503
(
2009
).
25.
T.
Ichiye
and
D.
Chandler
,
J. Phys. Chem.
92
,
5257
(
1988
).
26.
H.
Tanaka
,
J.
Walsh
, and
K. E.
Gubbins
,
Mol. Phys.
76
,
1221
(
1992
).
27.
L.
Lue
and
D.
Blankschtein
,
J. Phys. Chem.
96
,
8582
(
1992
).
28.
W. L.
Jorgensen
,
J. Phys. Chem.
90
,
1276
(
1986
).
29.
L.
Bianchi
,
A. K.
Adya
,
O. N.
Kalugin
, and
C. J.
Wormald
,
Mol. Simul.
25
,
321
(
2000
).
30.
I. R.
McDonald
,
D. G.
Bounds
, and
M. L.
Klein
,
Mol. Phys.
45
,
521
(
1982
).
31.
J. -P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 2nd ed. (
Academic
,
London
,
1986
).
32.
K. S.
Schweizer
and
J. G.
Curro
,
Adv. Chem. Phys.
98
,
1
(
1997
).
33.
F.
Hirata
,
Molecular Theory of Solvation
(
Kluwer Academic
,
Dordrecht
,
2003
).
34.
D.
Costa
,
J. -P.
Hansen
, and
L.
Harnau
,
Mol. Phys.
103
,
1917
(
2005
).
35.
J. -P.
Hansen
and
C.
Pearson
,
Mol. Phys.
104
,
3389
(
2006
).
37.
A.
Yethiraj
,
J. Phys. Chem. B
113
,
1539
(
2009
).
38.
F.
Hirata
,
Bull. Chem. Soc. Jpn.
71
,
1483
(
1998
).
39.
F.
Hirata
,
B. M.
Pettitt
, and
P. J.
Rossky
,
J. Chem. Phys.
77
,
509
(
1982
).
40.
L.
Belloni
,
J. Chem. Phys.
98
,
8080
(
1993
).
41.
L.
Harnau
and
J. -P.
Hansen
,
J. Chem. Phys.
116
,
9051
(
2002
).
42.
A.
Kovalenko
and
F.
Hirata
,
J. Chem. Phys.
110
,
10095
(
1999
).
43.
A.
Kovalenko
and
F.
Hirata
,
Chem. Phys. Lett.
349
,
496
(
2001
).
44.
K.
Yoshida
,
T.
Yamaguchi
,
A.
Kovalenko
, and
F.
Hirata
,
J. Phys. Chem. B
106
,
5042
(
2002
).
45.
A.
Kovalenko
and
F.
Hirata
,
J. Theor. Comput. Chem.
1
,
381
(
2002
).
47.
A. B.
Bhatia
and
D. E.
Thorton
,
Phys. Rev. B
2
,
3004
(
1970
).
48.
N. H.
March
and
M. P.
Tosi
,
Atomic Dynamics in Liquids
(
MacMillan
,
London, Basingstoke
,
1976
).
50.
K.
Refson
,
Comput. Phys. Commun.
126
,
310
(
2000
).
51.
A.
Dullweber
,
B.
Leimkuhler
, and
R.
McLachlan
,
J. Chem. Phys.
107
,
5840
(
1997
).
52.
S. D.
Bond
,
B. J.
Leimkuhler
, and
B. B.
Laird
,
J. Comput. Phys.
151
,
114
(
1999
).
53.
H. C.
Andersen
,
J. Chem. Phys.
72
,
2384
(
1980
).
54.
M. P.
Allen
and
D. J.
Tildsley
,
Computer Simulation of Liquids
(
Oxford University Press
,
Oxford
,
1987
).
55.
P. A.
Egelstaff
,
E. I.
Page
, and
J. G.
Powles
,
Mol. Phys.
20
,
881
(
1971
).
56.
M.
Haughney
,
M.
Ferrario
, and
I. R.
McDonald
,
J. Phys. Chem.
91
,
4934
(
1987
).
57.
C. D.
Adkins
,
Equilibrium Thermodynamics
, 3rd ed. (
Cambridge University Press
,
Cambridge
,
1983
).
58.
P.
Jedlovszky
,
A.
Idrissi
, and
G.
Jancso
,
J. Chem. Phys.
130
,
124516
(
2009
).
59.
M.
Kang
,
A.
Perera
, and
P. E.
Smith
,
J. Chem. Phys.
131
,
157101
(
2009
).
You do not currently have access to this content.