A combined theoretical and solid-state O17 nuclear magnetic resonance (NMR) study of the electronic structure of the uranyl ion UO22+ in (NH4)4UO2(CO3)3 and rutherfordine (UO2CO3) is presented, the former representing a system with a hydrogen-bonding environment around the uranyl oxygens and the latter exemplifying a uranyl environment without hydrogens. Relativistic density functional calculations reveal unique features of the U–O covalent bond, including the finding of O17 chemical shift anisotropies that are among the largest for oxygen ever reported (>1200ppm). Computational results for the oxygen electric field gradient tensor are found to be consistently larger in magnitude than experimental solid-state O17 NMR measurements in a 7.05 T magnetic field indicate. A modified version of the Solomon theory of the two-spin echo amplitude for a spin-5/2 nucleus is developed and applied to the analysis of the O17 echo signal of UO1722+.

1.
M.
Pepper
and
B. E.
Bursten
,
Chem. Rev. (Washington, D.C.)
91
,
719
(
1991
).
2.
R. G.
Denning
,
Struct. Bonding (Berlin)
79
,
215
(
1992
).
3.
G.
Schreckenbach
,
P. J.
Hay
, and
R. L.
Martin
,
J. Comput. Chem.
20
,
70
(
1999
).
4.
N.
Kaltsoyannis
,
Chem. Soc. Rev.
32
,
9
(
2003
).
5.
R. G.
Denning
,
J. Phys. Chem. A
111
,
4125
(
2007
).
6.
W. A.
de Jong
,
L.
Visscher
, and
W. C.
Nieuwpoort
,
J. Mol. Struct.
458
,
41
(
1999
).
7.
J.
Autschbach
and
S.
Zheng
,
Annu. Rep. NMR Spectrosc.
67
,
1
(
2009
).
8.
B.
Bleaney
,
P. M.
Llewellyn
,
M. H. L.
Pryce
, and
G. R.
Hall
,
Philos. Mag.
45
,
773
(
1954
).
9.
B.
Bleaney
,
P. M.
Llewellyn
,
M. H. L.
Pryce
, and
G. R.
Hall
,
Philos. Mag.
45
,
991
(
1954
).
10.
B.
Bleaney
,
P. M.
Llewellyn
,
M. H. L.
Pryce
, and
G. R.
Hall
,
Philos. Mag.
45
,
992
(
1954
).
11.
J. C.
Eisenstein
and
M. H. L.
Pryce
,
Proc. R. Soc. London, Ser. A
229
,
20
(
1955
).
12.
C. A.
Hutchison
and
W. B.
Lewis
,
Phys. Rev.
95
,
1096
(
1954
).
13.
W. -S.
Jung
,
Y.
Ikeda
,
H.
Tomiyasu
, and
H.
Fukutomi
,
Bull. Chem. Soc. Jpn.
57
,
2317
(
1984
).
14.
W. -S.
Jung
,
H.
Tomiyasu
, and
H.
Fukutomi
,
Bull. Chem. Soc. Jpn.
58
,
938
(
1985
).
15.
P. G.
Allen
,
J. J.
Bucher
,
D. L.
Clark
,
N. M.
Edelstein
,
S. A.
Ekberg
,
J. W.
Gohdes
,
E. A.
Hudson
,
N.
Kaltsoyannis
, and
W. W.
Lukens
,
Inorg. Chem.
34
,
4797
(
1995
).
16.
J. A.
Monard
,
P. G.
Huray
, and
J. O.
Thomson
,
Phys. Rev. B
9
,
2838
(
1974
).
17.
Extended heating of (NH4)4UO2(CO3)3 in air above 190°C is reported to produce amorphous hydrous UO3 (Refs. 46–48) and some of this phase was probably present with the O17-enriched UO2CO3.
18.
G.
Bodenhausen
,
R.
Freeman
, and
D. L.
Turner
,
J. Magn. Reson.
27
,
511
(
1977
).
19.
ADF 2003.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands (http://www.scm.com).
20.
C.
Fonseca Guerra
,
J. G.
Snijders
,
G.
te Velde
, and
E. J.
Baerends
,
Theor. Chem. Acc.
99
,
391
(
1998
).
21.
G.
te Velde
,
F. M.
Bickelhaupt
,
S. J. A.
van Gisbergen
,
C.
Fonseca Guerra
,
E. J.
Baerends
,
J. G.
Snijders
, and
T. J.
Ziegler
,
J. Comput. Chem.
22
,
931
(
2001
).
22.
C. L.
Christ
,
J. R.
Clark
, and
H. T.
Evans
, Jr.
,
Science
121
,
472
(
1955
).
23.
J. R.
Clark
and
C. L.
Christ
,
Am. Mineral.
41
,
844
(
1956
).
24.
R. J.
Finch
,
M. A.
Cooper
,
F. C.
Hawthorne
, and
R. C.
Ewing
,
Can. Mineral.
37
,
929
(
1999
).
25.
V. N.
Serezhkin
,
M. A.
Soldatkina
, and
N. V.
Boiko
,
J. Struct. Chem.
24
,
770
(
1984
).
26.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1989
).
27.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
28.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
29.
C. T.
Lee
,
W. T.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
30.
E.
van Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
,
J. Chem. Phys.
99
,
4597
(
1993
).
31.
E.
van Lenthe
,
A. E.
Ehlers
, and
E. J.
Baerends
,
J. Chem. Phys.
110
,
8943
(
1999
).
32.
G.
Schreckenbach
and
T.
Ziegler
,
J. Phys. Chem.
99
,
606
(
1995
).
33.
S. K.
Wolff
,
T.
Ziegler
,
E.
van Lenthe
, and
E. J.
Baerends
,
J. Chem. Phys.
110
,
7689
(
1999
).
34.
C. P.
Slichter
,
Principles of Magnetic Resonance
, 3rd ed. (
Springer-Verlag
,
New York
,
1990
).
35.
M. H.
Cohen
and
F.
Reif
,
Solid State Phys.
5
,
321
(
1957
).
36.
A.
Samoson
,
E.
Kundla
, and
E.
Lippmaa
,
J. Magn. Reson.
49
,
350
(
1982
).
37.
D.
Freude
and
J.
Haase
,
NMR Basic Principles and Progress
(
Springer-Verlag
,
Berlin
,
1993
), Vol.
29
, p.
1
.
38.
M.
Mehring
,
Principles of High Resolution NMR in Solids
, 2nd ed. (
Springer-Verlag
,
Berlin
,
1983
).
39.
M. J.
Mombourquette
and
J. A.
Weil
,
J. Magn. Reson.
99
,
37
(
1992
).
40.
P.
Raghavan
,
At. Data Nucl. Data Tables
42
,
189
(
1989
).
41.
S.
Smith
,
T.
Levante
,
B. H.
Meier
, and
R. R.
Ernst
,
J. Magn. Reson., Ser. A
106
,
75
(
1994
).
42.
I.
Solomon
,
Phys. Rev.
110
,
61
(
1958
).
43.
A.
Abragam
,
Principles of Nuclear Magnetism
(
Clarendon
,
Oxford
,
1961
).
44.
See supplementary material at http://dx.doi.org/10.1063/1.3308499 for data on uranyl clusters in Table I, including atomic coordinates and computed uranyl oxygen EFG and shielding tensors.
45.
R.
Bast
and
P.
Schwerdtfeger
,
J. Chem. Phys.
119
,
5988
(
2003
).
46.
L.
Hälldahl
,
Thermochim. Acta
95
,
389
(
1985
).
47.
L.
Hälldahl
and
M.
Nygren
,
J. Nucl. Mater.
138
,
99
(
1986
).
48.
B. S.
Girgis
and
N. H.
Rofail
,
Thermochim. Acta
196
,
105
(
1992
).

Supplementary Material

You do not currently have access to this content.