Valence ionized states of iron pentacarbonyl Fe(CO)5 and η5-cyclopentadienyl cobalt dicarbonyl Co(η5-C5H5)(CO)2 have been studied by ultraviolet photoelectron spectroscopy, two-dimensional Penning ionization electron spectroscopy (2D-PIES), and symmetry-adapted cluster-configuration interaction calculations. Theory provided reliable assignments for the complex ionization spectra of these molecules, which have metal-carbonyl bonds. Theoretical ionization energies agreed well with experimental observations and the calculated wave functions could explain the relative intensities of PIES spectra. The collision-energy dependence of partial ionization cross sections (CEDPICS) was obtained by 2D-PIES. To interpret these CEDPICS, the interaction potentials between the molecules and a Li atom were examined in several coordinates by calculations. The relation between the slope of the CEDPICS and the electronic structure of the ionized states, such as molecular symmetry and the spatial distribution of ionizing orbitals, was analyzed. In Fe(CO)5, an attractive interaction was obtained for the equatorial CO, while the interaction for the axial CO direction was repulsive. For Co(η5-C5H5)(CO)2, the interaction potential in the direction of both Co–C–O and Co–Cp ring was attractive. These anisotropic interactions and ionizing orbital distributions consistently explain the relative slopes of the CEDPICS.

1.
T.
Koopmans
,
Physica (Amsterdam)
1
,
104
(
1934
).
2.
J. C.
Green
,
Acc. Chem. Res.
27
,
131
(
1994
);
E. I.
Solomon
,
L.
Basumallick
,
P.
Chen
, and
P.
Kennepohl
,
Coord. Chem. Rev.
249
,
229
(
2005
).
3.
M. A.
Coplan
,
J. H.
Moor
, and
J. P.
Doering
,
Rev. Mod. Phys.
66
,
985
(
1994
).
4.
M. S.
Deleuze
,
W. N.
Pang
,
A.
Salam
, and
R. C.
Shang
,
J. Am. Chem. Soc.
123
,
4049
(
2001
);
[PubMed]
S.
Knippenberg
,
K. L.
Nixon
,
H.
Mackenzie-Ross
,
M. J.
Brunger
,
F.
Wang
,
M. S.
Deleuze
,
J. P.
Francois
, and
D. A.
Winkler
,
J. Phys. Chem. A
109
,
9324
(
2005
).
[PubMed]
5.
J.
Rolke
,
Y.
Zheng
,
C. E.
Brion
,
S. J.
Chakravorty
,
E. R.
Davidson
, and
I. E.
McCarthy
,
Chem. Phys.
215
,
191
(
1997
).
6.
K.
Ohno
,
H.
Yamakado
,
T.
Ogawa
, and
T.
Yamata
,
J. Chem. Phys.
105
,
7536
(
1996
).
7.
K.
Ohno
,
Bull. Chem. Soc. Jpn.
77
,
887
(
2004
), and references therein.
8.
N.
Kishimoto
and
K.
Ohno
,
Int. Rev. Phys. Chem.
26
,
93
(
2007
).
9.
M.
Ohno
and
W.
von Niessen
,
J. Chem. Phys.
95
,
373
(
1991
).
10.
W.
von Niessen
and
L. S.
Cederbaum
,
Mol. Phys.
43
,
897
(
1981
);
M.
Ohno
,
W.
von Niessen
, and
J.
Schule
,
Chem. Phys.
158
,
1
(
1991
);
J. S.
Lin
and
J. V.
Ortiz
,
Chem. Phys. Lett.
171
,
197
(
1990
);
S.
Kambalapalli
and
J. V.
Ortiz
,
J. Phys. Chem. A
108
,
2988
(
2004
);
M.
Pernpointner
,
T.
Rapps
, and
L. S.
Cederbaum
,
J. Chem. Phys.
129
,
174302
(
2008
).
[PubMed]
11.
S.
Knippenberg
,
J. -P.
Francois
, and
M. S.
Deleuze
,
J. Comput. Chem.
27
,
1703
(
2006
);
[PubMed]
T.
Horio
,
T.
Hatamoto
,
S.
Maeda
,
N.
Kishimoto
, and
K.
Ohno
,
J. Chem. Phys.
124
,
104308
(
2006
);
[PubMed]
N.
Kishimoto
,
Y.
Hagihara
,
K.
Ohno
,
S.
Knippenberg
,
J. -P.
Francois
, and
M. S.
Deleuze
,
J. Phys. Chem. A
109
,
10535
(
2005
);
[PubMed]
F.
Morini
,
B
Hajgató
,
M. S.
Deleuze
,
C. G.
Ning
, and
J. K.
Deng
,
J. Phys. Chem. A
112
,
9083
(
2008
);
[PubMed]
B
Hajgató
,
M. S.
Deleuze
, and
F.
Morini
,
J. Phys. Chem. A
113
,
7138
(
2009
).
[PubMed]
12.
N.
Kishimoto
and
K.
Ohno
,
J. Phys. Chem. A
113
,
14559
(
2009
).
13.
H.
Nakatsuji
and
K.
Hirao
,
J. Chem. Phys.
68
,
2053
(
1978
).
14.
H.
Nakatsuji
,
Chem. Phys. Lett.
59
,
362
(
1978
);
H.
Nakatsuji
,
Chem. Phys. Lett.
67
,
329
(
1979
);
H.
Nakatsuji
,
Chem. Phys. Lett.
67
,
334
(
1979
).
15.
O.
Kitao
and
H.
Nakatsuji
,
J. Chem. Phys.
87
,
1169
(
1987
);
J.
Wan
,
M.
Ehara
,
M.
Hada
, and
H.
Nakatsuji
,
J. Chem. Phys.
113
,
5245
(
2000
);
J.
Wan
,
M.
Hada
,
M.
Ehara
, and
H.
Nakatsuji
,
J. Chem. Phys.
114
,
5117
(
2001
);
H.
Nakatsuji
,
M.
Komori
, and
O.
Kitao
,
Chem. Phys. Lett.
142
,
446
(
1987
);
M.
Ehara
,
M.
Nakata
, and
H.
Nakatsuji
,
Mol. Phys.
104
,
971
(
2006
).
16.
P.
Tomasello
,
J.
Hasegawa
, and
H.
Nakatsuji
,
Europhys. Lett.
41
,
611
(
1998
);
M.
Ehara
,
Y.
Ohtsuka
, and
H.
Nakatsuji
,
Chem. Phys.
226
,
113
(
1998
);
P.
Tomasello
,
M.
Ehara
, and
H.
Nakatsuji
,
J. Chem. Phys.
118
,
5811
(
2003
).
17.
M.
Ehara
,
M.
Ishida
, and
H.
Nakatsuji
,
J. Chem. Phys.
117
,
3248
(
2002
);
M.
Ehara
,
Y.
Ohtsuka
,
H.
Nakatsuji
,
M.
Takahashi
, and
Y.
Udagawa
,
J. Chem. Phys.
122
,
234319
(
2005
);
[PubMed]
M.
Ehara
,
S.
Yasuda
, and
H.
Nakatsuji
,
Z. Phys. Chem.
217
,
161
(
2003
).
18.
K.
Ishimura
,
M.
Hada
, and
H.
Nakatsuji
,
J. Chem. Phys.
117
,
6533
(
2002
).
19.
R.
Fukuda
and
H.
Nakatsuji
,
J. Chem. Phys.
128
,
094105
(
2008
).
20.
H.
Nakatsuji
,
Chem. Phys.
75
,
425
(
1983
);
H.
Nakatsuji
,
J.
Hasegawa
, and
M.
Hada
,
J. Chem. Phys.
104
,
2321
(
1996
).
21.
R.
Fukuda
,
S.
Hayaki
, and
H.
Nakatsuji
,
J. Chem. Phys.
131
,
174303
(
2009
).
22.
E. W.
Plummer
,
W. R.
Salaneck
, and
J. S.
Miller
,
Phys. Rev. B
18
,
1673
(
1978
).
23.
T.
Horio
,
M.
Yamazaki
,
S.
Maeda
,
N.
Kishimoto
, and
K.
Ohno
,
J. Chem. Phys.
123
,
194308
(
2005
).
24.
Y.
Harada
,
K.
Ohno
, and
H.
Mutoh
,
J. Chem. Phys.
79
,
3251
(
1983
).
25.
E. J.
Baerends
,
Ch.
Oudshoorn
, and
A.
Oskam
,
J. Electron Spectrosc. Relat. Phenom.
6
,
259
(
1975
);
C.
Angeli
,
G.
Berthier
,
C.
Rolando
,
M.
Sablier
,
C.
Alcaraz
, and
O.
Dutuit
,
J. Phys. Chem. A
101
,
7907
(
1997
).
26.
X.
Li
,
G. M.
Bancroft
,
R. J.
Puddephatt
,
Y. -F.
Hu
, and
K. H.
Tan
,
Organometallics
15
,
2890
(
1996
).
27.
K.
Kimura
,
S.
Katsumata
,
Y.
Achiba
,
T.
Yamazaki
, and
S.
Iwata
,
Handbook of He I Photoelectron Spectra of Fundamental Organic Molecules
(
Japan Scientific Societies
,
Tokyo
,
1981
).
28.
N.
Kishimoto
,
J.
Aizawa
,
H.
Yamakado
, and
K.
Ohno
,
J. Phys. Chem. A
101
,
5038
(
1997
).
29.
H.
Nakatsuji
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
, and
H.
Nakai
, SAC-CI GUIDE (
2005
) (PDF file is available at http://www.qcri.or.jp/sacci/).
30.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN Development Version, Revision H.01 (Gaussian, Inc., Wallingford, CT,
2009
).
31.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
32.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
33.
T. H.
Dunning
, Jr.
and
P. J.
Hay
, in
Modern Theoretical Chemistry
, edited by
H. F.
Schaefer
 III
(
Plenum
,
New York
,
1977
), Vol.
3
, pp.
1
27
.
34.
T. J.
Lee
and
P. R.
Taylor
,
Int. J. Quantum Chem., Symp.
23
,
199
(
1989
).
35.
O.
González-Blanco
and
V.
Branchadell
,
J. Chem. Phys.
110
,
778
(
1999
).
36.
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
270
(
1985
);
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
299
(
1985
);
W. R.
Wadt
and
P. J.
Hay
,
J. Chem. Phys.
82
,
284
(
1985
).
37.
E. R.
Davidson
,
J. Comput. Phys.
17
,
87
(
1975
);
K.
Hirao
and
H.
Nakatsuji
,
J. Comput. Phys.
45
,
246
(
1982
).
38.
F.
Mertins
and
J.
Schirmer
,
Phys. Rev. A
53
,
2140
(
1996
).
39.
S.
Süzer
,
S. T.
Lee
, and
D. A.
Shirley
,
Phys. Rev. A
13
,
1842
(
1976
);
R. I.
Martin
and
D. A.
Shirley
,
J. Chem. Phys.
64
,
3685
(
1976
).
40.
A.
Niehaus
,
Adv. Chem. Phys.
45
,
399
(
1981
).
41.
H.
Hotop
,
T. E.
Roth
,
M. -W.
Ruf
, and
A. J.
Yencha
,
Theor. Chem. Acc.
100
,
36
(
1998
).
42.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
43.
A. J. H.
Wachters
,
J. Chem. Phys.
52
,
1033
(
1970
);
P. J.
Hay
,
J. Chem. Phys.
66
,
4377
(
1977
).
44.
K.
Raghavachari
and
G. W.
Trucks
,
J. Chem. Phys.
91
,
1062
(
1989
).
45.
D.
Moran
,
A. C.
Simmonett
,
F. E.
Leach
 III
,
W. D.
Allen
,
P. v. R.
Schleyer
, and
H. F.
Schaefer
 III
,
J. Am. Chem. Soc.
128
,
9342
(
2006
).
46.
L. S.
Cederbaum
and
W.
Domcke
,
J. Chem. Phys.
64
,
603
(
1976
);
E. R.
Davidson
and
A. A.
Jarzęcki
,
Chem. Phys. Lett.
285
,
155
(
1998
);
L. S.
Cederbaum
,
W.
Domcke
,
J.
Schirmer
, and
W.
von Niessen
,
Adv. Chem. Phys.
65
,
115
(
1986
);
A. D. O.
Bawagan
and
E. R.
Davidson
,
Adv. Chem. Phys.
110
,
215
(
1999
).
You do not currently have access to this content.