This paper describes and illustrates a way to construct multidimensional representations of reactive potential energy surfaces (PESs) by a multiconfiguration Shepard interpolation (MCSI) method based only on gradient information, that is, without using any Hessian information from electronic structure calculations. MCSI, which is called multiconfiguration molecular mechanics (MCMM) in previous articles, is a semiautomated method designed for constructing full-dimensional PESs for subsequent dynamics calculations (classical trajectories, full quantum dynamics, or variational transition state theory with multidimensional tunneling). The MCSI method is based on Shepard interpolation of Taylor series expansions of the coupling term of a 2×2 electronically diabatic Hamiltonian matrix with the diagonal elements representing nonreactive analytical PESs for reactants and products. In contrast to the previously developed method, these expansions are truncated in the present version at the first order, and, therefore, no input of electronic structure Hessians is required. The accuracy of the interpolated energies is evaluated for two test reactions, namely, the reaction OH+H2H2O+H and the hydrogen atom abstraction from a model of α-tocopherol by methyl radical. The latter reaction involves 38 atoms and a 108-dimensional PES. The mean unsigned errors averaged over a wide range of representative nuclear configurations (corresponding to an energy range of 19.5 kcal/mol in the former case and 32 kcal/mol in the latter) are found to be within 1 kcal/mol for both reactions, based on 13 gradients in one case and 11 in the other. The gradient-based MCMM method can be applied for efficient representations of multidimensional PESs in cases where analytical electronic structure Hessians are too expensive or unavailable, and it provides new opportunities to employ high-level electronic structure calculations for dynamics at an affordable cost.

1.
H.
Eyring
,
Chem. Rev. (Washington, D.C.)
10
,
103
(
1932
).
2.
L. S.
Kassel
,
Kinetics of Homogeneous Gas Reactions
(
Chemical Catalog Co.
,
New York
,
1932
).
3.
D. G.
Truhlar
and
C. A.
Parr
,
J. Phys. Chem.
75
,
1844
(
1971
).
4.
D. G.
Truhlar
and
R. E.
Wyatt
,
Adv. Chem. Phys.
27
,
1
(
1976
).
5.
J. C.
Tully
, in
Semiempirical Methods of Electronic Structure Calculations, Part A: Techniques
, edited by
G. A.
Segal
(
Plenum
,
New York
,
1977
), p.
173
.
6.
P. J.
Kuntz
, in
Atom-Molecule Collision Theory: A Guide for the Experimentalist
, edited by
R. B.
Bernstein
(
Plenum
,
New York
,
1979
), p.
79
.
7.
J. W.
Downing
and
J.
Michl
, in
Potential Energy Surfaces and Dynamics Calculations
, edited by
D. G.
Truhlar
(
Plenum
,
New York
,
1979
), p.
199
.
8.
M.
Baer
and
I.
Last
, in
Potential Energy Surfaces and Dynamics Calculations
, edited by
D. G.
Truhlar
(
Plenum
,
New York
,
1981
), p.
519
.
9.
J. N.
Murrell
,
S. C.
Farantos
, and
S.
Carter
,
Molecular Potential Energy Functions
(
Wiley
,
New York
,
1984
).
10.
D. M.
Hirst
,
Potential Energy Surfaces
(
Taylor & Francis
,
London
,
1985
).
11.
D. G.
Truhlar
,
R.
Steckler
, and
M. S.
Gordon
,
Chem. Rev. (Washington, D.C.)
87
,
217
(
1987
).
12.
G. C.
Schatz
,
Rev. Mod. Phys.
61
,
669
(
1989
).
13.
M. A.
Collins
,
Theor. Chem. Acc.
108
,
313
(
2002
).
14.
T. V.
Albu
,
J.
Espinosa-Garca
, and
D. G.
Truhlar
,
Chem. Rev. (Washington, D.C.)
107
,
5101
(
2007
).
15.
D. L.
Crittenten
and
M. J. T.
Jordan
, Jr.
,
Chem. Phys.
122
,
044102
(
2005
).
16.
T.
Ishida
and
G. C.
Schatz
,
J. Comput. Chem.
24
,
1077
(
2003
).
17.
R.
Dawes
,
D. L.
Thompson
,
A. F.
Wagner
, and
M.
Minkof
,
J. Chem. Phys.
128
,
084107
(
2008
).
18.
R.
Dawes
,
A.
Passalaqua
,
A. F.
Wagner
,
T. D.
Sewell
,
M.
Minkoff
, and
D. L.
Thompson
,
J. Chem. Phys.
130
,
144107
(
2009
).
19.
Z.
Jin
,
B. J.
Braams
, and
J. M.
Bowman
,
J. Phys. Chem. A
110
,
1569
(
2006
).
20.
G.
Czakó
,
B. C.
Shepler
,
B. J.
Braams
, and
J. M.
Bowman
,
J. Chem. Phys.
130
,
084301
(
2009
).
21.
Y.
Kim
,
J. C.
Corchado
,
J.
Villà
,
X.
Xing
, and
D. G.
Truhlar
,
J. Chem. Phys.
112
,
2718
(
2000
). The corrected equations for the gradients and Hessians and the up-to-date algorithm are given in Ref. 23.
22.
O.
Tishchenko
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
3
,
938
(
2007
).
23.
O.
Tishchenko
and
D. G.
Truhlar
,
J. Chem. Phys.
130
,
024105
(
2009
).
24.
M.
Higashi
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
4
,
790
(
2008
).
25.
O.
Tishchenko
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
5
,
1454
(
2009
).
26.
T. V.
Albu
,
J. C.
Corchado
, and
D. G.
Truhlar
,
J. Phys. Chem. A
105
,
8465
(
2001
).
27.
D. G.
Truhlar
,
J. Phys. Chem. A
106
,
5048
(
2002
).
28.
H.
Lin
,
J.
Pu
,
T. V.
Albu
, and
D. G.
Truhlar
,
J. Phys. Chem. A
108
,
4112
(
2004
).
29.
K. H.
Kim
and
Y.
Kim
,
J. Chem. Phys.
120
,
623
(
2004
).
30.
Y.
Kim
and
Y.
Kim
,
J. Phys. Chem. A
110
,
600
(
2006
).
31.
O.
Tishchenko
and
D. G.
Truhlar
,
J. Phys. Chem. A
110
,
13530
(
2006
).
32.
H.
Lin
,
Y.
Zhao
,
O.
Tishchenko
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
2
,
1237
(
2006
).
33.
Y.
Zhang
and
H.
Lin
,
J. Phys. Chem. A
113
,
11501
(
2009
).
34.
M.
Higashi
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
4
,
1032
(
2008
).
35.
M.
Higashi
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
5
,
2925
(
2009
).
36.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
108
,
6908
(
2004
).
37.
W. J.
Hehre
,
L.
Radom
,
P. R.
Schleyer
, and
J. A.
Pople
,
Ab Initio Molecular Orbital Theory
(
Wiley
,
New York
,
1986
).
38.
N. C.
Allinger
,
Y. H.
Yuh
, and
J. -H.
Lii
,
J. Am. Chem. Soc.
111
,
8551
(
1989
);
J. -H.
Lii
and
N. L.
Allinger
,
J. Am. Chem. Soc.
111
,
8566
(
1989
);
J. -H.
Lii
and
N. L.
Allinger
,
J. Am. Chem. Soc.
111
,
8576
(
1989
).
39.
A. D.
MacKerell
,Jr.
,
D.
Bashford
,
M.
Bellott
,
R. L.
Dunbrack
,
J. D.
Evanseck
,
M. J.
Field
,
S.
Fischer
,
J.
Gao
,
H.
Guo
,
S.
Ha
,
D.
Joseph-McCarthy
,
L.
Kuchnir
,
K.
Kuczera
,
F. T. K.
Lau
,
C.
Mattos
,
S.
Michnick
,
T.
Ngo
,
D. T.
Nguyen
,
B.
Prodhom
,
W. E.
Reiher
III
,
B.
Roux
,
M.
Schlenkrich
,
J. C.
Smith
,
R.
Stote
,
J.
Straub
,
M.
Watanabe
,
J.
Wiorkiewicz-Kuczera
,
D.
Yin
, and
M. J.
Karplus
,
Phys. Chem. B
102
,
3586
(
1998
);
A. D.
MacKerell
, Jr.
,
J. Comput. Chem.
25
,
1584
(
2004
).
[PubMed]
40.
O.
Tishchenko
,
M.
Higashi
,
T. V.
Albu
,
J. C.
Corchado
,
Y.
Kim
,
J.
Villà
,
J.
Xing
,
H.
Lin
, and
D. G.
Truhlar
, MC-TINKER-2009, University of Minnesota, Minneapolis, MN,
2008
.
41.
G. W.
Burton
and
K. U.
Ingold
,
Acc. Chem. Res.
19
,
194
(
1986
).
42.
M. I.
de Heer
,
P.
Mulder
,
H. -G.
Korth
,
K. U.
Ingold
, and
J.
Lusztyk
,
J. Am. Chem. Soc.
122
,
2355
(
2000
);
O.
Tishchenko
,
E. S.
Kryachko
, and
M. T.
Nguyen
,
J. Mol. Struct.
615
,
247
(
2002
);
J. M.
Mayer
,
D. A.
Hrovat
,
J. L.
Thomas
, and
W. T.
Borden
,
J. Am. Chem. Soc.
124
,
11142
(
2002
);
[PubMed]
M.
Lucarini
,
V.
Mugnaini
,
G. F.
Pedulli
, and
M.
Guerra
,
J. Am. Chem. Soc.
125
,
8318
(
2003
).
[PubMed]
43.
B.
Ahrens
,
M. G.
Davidson
,
V. T.
Forsyth
,
M. F.
Mahon
,
A. L.
Johnson
,
S. A.
Mason
,
R. D.
Price
, and
P. R.
Raithby
,
J. Am. Chem. Soc.
123
,
9164
(
2001
).
44.
M.
Lucarini
,
G. F.
Pedulli
, and
M.
Cipollone
,
J. Org. Chem.
59
,
5063
(
1994
);
T.
Brinck
,
M.
Haeberlein
, and
M.
Jonsson
,
J. Am. Chem. Soc.
119
,
4239
(
1997
);
J. S.
Wright
,
D. J.
Carpenter
,
D. J.
McKay
, and
K. U.
Ingold
,
J. Am. Chem. Soc.
119
,
4245
(
1997
);
J. S.
Wright
,
E. R.
Johnson
, and
G. A.
DiLabio
,
J. Am. Chem. Soc.
123
,
1173
(
2001
).
[PubMed]
45.
O.
Tishchenko
,
D. G.
Truhlar
,
A.
Ceulemans
, and
M. T.
Nguyen
,
J. Am. Chem. Soc.
130
,
7000
(
2008
).
46.
See supplementary material at http://dx.doi.org/10.1063/1.3310296 for supplementary information including new molecular mechanics parameters and Cartesian coordinates of all Shepard points.

Supplementary Material

You do not currently have access to this content.