The identification of metastable states of a molecule plays an important role in the interpretation of molecular simulation data because the free-energy surface, the relative populations in this landscape, and ultimately also the dynamics of the molecule under study can be described in terms of these states. We compare the results of three different geometric cluster algorithms (neighbor algorithm, K-medoids algorithm, and common-nearest-neighbor algorithm) among each other and to the results of a kinetic cluster algorithm. First, we demonstrate the characteristics of each of the geometric cluster algorithms using five two-dimensional data sets. Second, we analyze the molecular dynamics data of a β-heptapeptide in methanol—a molecule that exhibits a distinct folded state, a structurally diverse unfolded state, and a fast folding/unfolding equilibrium—using both geometric and kinetic cluster algorithms. We find that geometric clustering strongly depends on the algorithm used and that the density based common-nearest-neighbor algorithm is the most robust of the three geometric cluster algorithms with respect to variations in the input parameters and the distance metric. When comparing the geometric cluster results to the metastable states of the β-heptapeptide as identified by kinetic clustering, we find that in most cases the folded state is identified correctly but the overlap of geometric clusters with further metastable states is often at best approximate.

1.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
New York
,
1989
).
3.
D.
Chema
and
A.
Goldblum
,
J. Chem. Inf. Comput. Sci.
43
,
208
(
2003
).
4.
X.
Daura
,
W. F.
van Gunsteren
, and
A. E.
Mark
,
Proteins
34
,
269
(
1999
).
5.
A.
Glättli
,
D.
Seebach
, and
W. F.
van Gunsteren
,
Helv. Chim. Acta
87
,
2487
(
2004
).
6.
X.
Daura
,
B.
Jaun
,
D.
Seebach
,
W. F.
van Gunsteren
, and
A. E.
Mark
,
J. Mol. Biol.
280
,
925
(
1998
).
7.
D.
Trzesniak
,
R. D.
Lins
, and
W. F.
van Gunsteren
,
Proteins: Struct., Funct., Bioinf.
65
,
136
(
2006
).
8.
J. D.
Chodera
,
N.
Singhal
,
V. S.
Pande
,
K. A.
Dill
, and
W. C.
Swope
,
J. Chem. Phys.
126
,
155101
(
2007
).
9.
F.
Noé
,
I.
Horenko
,
C.
Schütte
, and
J. C.
Smith
,
J. Chem. Phys.
126
,
155102
(
2007
).
10.
S.
Muff
and
A.
Caflisch
,
Proteins: Struct., Funct., Bioinf.
70
,
1185
(
2008
).
11.
W.
Huisinga
,
C.
Best
,
R.
Roitzsch
,
C.
Schütte
, and
F.
Cordes
,
J. Comput. Chem.
20
,
1760
(
1999
).
12.
P.
Deuflhard
,
W.
Huisinga
,
A.
Fischer
, and
C.
Schütte
,
Linear Algebr. Appl.
315
,
39
(
2000
).
13.
P. S.
Shenkin
and
D. Q.
McDonald
,
J. Comput. Chem.
15
,
899
(
1994
).
14.
G. M.
Downs
and
J. M.
Barnard
,
Reviews in Computational Chemistry
(
Wiley
,
New York
,
2002
), Vol.
18
, pp.
1
40
.
15.
J. Y.
Shao
,
S. W.
Tanner
,
N.
Thompson
, and
T. E.
Cheatham
,
J. Chem. Theory Comput.
3
,
2312
(
2007
).
16.
R. A.
Jarvis
and
E. A.
Patrick
,
IEEE Trans. Comput.
C-22
,
1025
(
1973
).
17.
See supplementary material at 10.1063/1.3301140 for an illustration of the transformation of a sample transition matrix T to the corresponding coarse-grained transition matrix Tcg.
18.
W. C.
Swope
,
J. W.
Pitera
,
F.
Suits
,
M.
Pitman
,
M.
Eleftheriou
,
B. G.
Fitch
,
R. S.
Germain
,
A.
Rayshubski
,
T. J. C.
Ward
,
Y.
Zhestkov
, and
R.
Zhou
,
J. Phys. Chem. B
108
,
6582
(
2004
).
19.
J. D.
Chodera
,
W. C.
Swope
,
J. W.
Pitera
, and
K. A.
Dill
,
Multiscale Model. Simul.
5
,
1214
(
2006
).
20.
C. H.
Jensen
,
D.
Nerukh
, and
R. C.
Glen
,
J. Chem. Phys.
128
,
115107
(
2008
).
21.
S. P.
Elmer
,
S.
Park
, and
V. S.
Pande
,
J. Chem. Phys.
123
,
114903
(
2005
).
22.
F.
Cordes
,
C.
Weber
, and
J.
Schmidt-Ehrenberg
, ZIB Report No. 02-40,
2002
.
23.
N. -V.
Buchete
and
G.
Hummer
,
J. Phys. Chem. B
112
,
6057
(
2008
).
24.
W. C.
Swope
,
J. W.
Pitera
, and
F.
Suits
,
J. Phys. Chem. B
108
,
6571
(
2004
).
25.
R.
Boned
,
W. F.
van Gunsteren
, and
X.
Daura
,
Chem.-Eur. J.
14
,
5039
(
2008
).
26.
W. F.
van Gunsteren
,
S. R.
Billeter
,
A. A.
Eising
 et al,
Biomolecular Simulation: The GROMOS96 Manual and User Guide
(
vdf Hochschulverlag AG an der ETH Zürich and BIOMOS b.v.
,
Zürich, Groningen
,
1996
).
27.
J. P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
28.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
Di Nola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
29.
Y.
Li
,
J. Chem. Inf. Model.
46
,
1742
(
2006
).

Supplementary Material

You do not currently have access to this content.