Electronic structure data and analytical representations of the potential energy surface for the adsorption of carbon monoxide on a crystalline copper Cu(100) substrate are reviewed. It is found that a previously published and widely used analytical hypersurface for this process [J. C. Tully, M. Gomez, and M. Head-Gordon, J. Vac. Sci. Technol. A11, 1914 (1993)] represents rather poorly the data obtained from a slab type calculation of the electronic structure. A new, global analytical representation of the potential energy surface for this process is derived via a nonlinear adjustment of parameters. It is more general and fits qualitatively better the electronic structure data. Key characteristic elements of the new surface are the “top” equilibrium adsorption site in the perpendicular arrangement Cu–C–O with Cu–C and C–O distances of 184 and 115 pm, the desorption energy of 0.76 eV and the barrier for lateral diffusion of 33 meV, including approximative corrections for the variation of zero point energy. Anharmonic vibrational fundamentals and overtones are also calculated from six dimensional variational calculations. All these values agree equally well or better with experimental data than previous published theoretical data within estimated uncertainties. The analytical representation is compact and robust, and may be used to describe other adsorption processes of diatomic molecules, including dissociative chemisorption.

2.
F.
Zaera
,
Int. Rev. Phys. Chem.
21
,
433
(
2002
).
3.
J.
Libuda
and
H. -J.
Freund
,
Surf. Sci. Rep.
57
,
157
(
2005
).
4.
G. A.
Somorjai
,
R. L.
York
,
D.
Butcher
, and
J. Y.
Park
,
Phys. Chem. Chem. Phys.
9
,
3500
(
2007
).
5.
J.
Greeley
,
J. K.
Norskov
, and
M.
Mavrikakis
,
Annu. Rev. Phys. Chem.
53
,
319
(
2002
).
6.
G. -J.
Kroes
,
A.
Gross
,
E. -J.
Baerends
,
M.
Scheffler
, and
D. A.
McCormack
,
Acc. Chem. Res.
35
,
193
(
2002
).
7.
A.
Hellman
,
E. J.
Baerends
,
M.
Biczysko
,
T.
Bligaard
,
C. H.
Christensen
,
D. C.
Clary
,
S.
Dahl
,
R.
van Harrevelt
,
K.
Honkala
,
H.
Jonsson
,
G. J.
Kroes
,
M.
Luppi
,
U.
Manthe
,
J. K.
Norskov
,
R. A.
Olsen
,
J.
Rossmeisl
,
E.
Skulason
,
C. S.
Tautermann
,
A. J. C.
Varandas
, and
J. K.
Vincent
,
J. Phys. Chem. B
110
,
17719
(
2006
).
8.
D. K.
Böhme
and
H.
Schwarz
,
Angew. Chem., Int. Ed.
44
,
2336
(
2005
).
9.
G.
te Velde
and
E. J.
Baerends
,
Chem. Phys.
177
,
399
(
1993
).
10.
J. C.
Tully
,
M.
Gomez
, and
M.
Head-Gordon
,
J. Vac. Sci. Technol. A
11
,
1914
(
1993
).
11.
J. T.
Kindt
,
J. C.
Tully
,
M.
Head-Gordon
, and
M.
Gomez
,
J. Chem. Phys.
109
,
3629
(
1998
).
12.
J. T.
Kindt
and
J. C.
Tully
,
Surf. Sci.
477
,
149
(
2001
).
13.
C.
Cattarius
and
H. -D.
Meyer
,
J. Chem. Phys.
121
,
9283
(
2004
).
14.
S. C.
Park
,
J. M.
Bowman
, and
D. A.
Jelski
,
J. Chem. Phys.
104
,
2457
(
1996
).
15.
S.
Carter
,
S. J.
Culik
, and
J. M.
Bowman
,
J. Chem. Phys.
107
,
10458
(
1997
).
16.
A.
Bahel
and
Z.
Bačić
,
J. Chem. Phys.
111
,
11164
(
1999
).
17.
D.
Bejan
,
G.
Raşeev
, and
M.
Monnerville
,
Surf. Sci.
470
,
293
(
2001
).
18.
S.
Beyvers
,
Y.
Ohtsuki
, and
P.
Saalfrank
,
J. Chem. Phys.
124
,
234706
(
2006
).
19.
J. C.
Tremblay
,
S.
Beyvers
, and
P.
Saalfrank
,
J. Chem. Phys.
128
,
194709
(
2008
).
20.
G.
te Velde
and
E. J.
Baerends
,
Phys. Rev. B
44
,
7888
(
1991
).
21.
G.
Tevelde
and
E. J.
Baerends
,
J. Comput. Phys.
99
,
84
(
1992
).
22.
R.
Marquardt
and
M.
Quack
,
J. Chem. Phys.
109
,
10628
(
1998
).
23.
R.
Marquardt
and
M.
Quack
,
J. Phys. Chem. A
108
,
3166
(
2004
).
24.
F.
Cuvelier
,
S.
Hervé
,
R.
Marquardt
, and
K.
Sagui
,
Chimia
58
,
296
(
2004
).
25.
R.
Marquardt
,
K.
Sagui
,
W.
Klopper
, and
M.
Quack
,
J. Phys. Chem. B
109
,
8439
(
2005
).
26.
R. A.
Olsen
,
H. F.
Busnengo
,
A.
Salin
,
M. F.
Somers
,
G. J.
Kroes
, and
E. J.
Baerends
,
J. Chem. Phys.
116
,
3841
(
2002
).
27.
A.
Gross
,
S.
Wilke
, and
M.
Scheffler
,
Phys. Rev. Lett.
75
,
2718
(
1995
).
28.
G.
Wiesenekker
,
G. J.
Kroes
, and
E. J.
Baerends
,
J. Chem. Phys.
104
,
7344
(
1996
).
29.
A.
Gross
and
M.
Scheffler
,
Phys. Rev. B
57
,
2493
(
1998
).
30.
S.
Lorenz
,
A.
Gross
, and
M.
Scheffler
,
Chem. Phys. Lett.
395
,
210
(
2004
).
31.
P.
Fouquet
,
R. A.
Olsen
, and
E. J.
Baerends
,
J. Chem. Phys.
119
,
509
(
2003
).
32.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
33.
34.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
35.
R. A.
Olsen
,
P. H. T.
Philipsen
, and
E. J.
Baerends
,
J. Chem. Phys.
119
,
4522
(
2003
).
36.
F.
Herman
and
L. J.
Skillman
,
Atomic Structure Calculations
(
Prentice-Hall
,
Eaglewood Cliffs, New Jersey
,
1963
).
37.
Binary Alloy Phase Diagrams
, edited by
T. B.
Massalski
(
ASM Internations
,
Ohio
,
1986
).
38.
G.
Wiesenekker
,
G. J.
Kroes
,
E. J.
Baerends
, and
R. C.
Mowrey
,
J. Chem. Phys.
102
,
3873
(
1995
).
39.
40.
R. N.
Zare
,
Angular Momentum
,
Baker Lecture Series
(
Wiley
,
New York
,
1988
).
41.
J. D.
Jackson
,
Classical Electrodynamics
(
Wiley
,
New York
,
1975
).
42.
J.
Dai
and
J. Z. H.
Zhang
,
J. Chem. Phys.
102
,
6280
(
1995
).
43.
A.
Forni
,
G.
Wiesenekker
,
E. J.
Baerends
, and
G. F.
Tantardini
,
J. Phys.: Condens. Matter
7
,
7195
(
1995
).
44.
S.
Caratzoulas
,
B.
Jackson
, and
M.
Persson
,
J. Chem. Phys.
107
,
6420
(
1997
).
45.
G.
Herzberg
,
Molecular Spectra and Molecular Structure
(
Van Nostrand Reinhold
,
New York
,
1989
).
46.
D. W.
Marquardt
,
J. Soc. Ind. Appl. Math.
11
,
431
(
1963
).
47.
R. W.
Freund
and
N. M.
Nachtigal
,
Linear Algebra for Large Scale and Real-Time Applications
(
Kluwer Academic
,
New York
,
1993
).
48.
R. W.
Freund
and
N. M.
Nachtigal
,
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
15
,
313
(
1994
).
49.
H. O.
Karlsson
and
S.
Holmgren
,
J. Chem. Phys.
117
,
9116
(
2002
).
50.
X. -G.
Wang
and
J.
Carrington
,
J. Chem. Phys.
117
,
6923
(
2002
).
51.
H. G.
Yu
,
J. Chem. Phys.
117
,
8190
(
2002
).
52.
X. -G.
Wang
and
J.
Carrington
,
J. Chem. Phys.
119
,
101
(
2003
).
53.
J. C.
Tremblay
and
J.
Carrington
,
J. Chem. Phys.
125
,
094311
(
2006
).
54.
J. T.
Muckerman
,
Chem. Phys. Lett.
173
,
200
(
1990
).
55.
M. A.
Collins
,
Theor. Chem. Acc.
108
,
313
(
2002
).
56.
S.
Manzhos
and
J.
Carrington
,
J. Phys. Chem. A
110
,
5295
(
2006
).
57.
S.
Manzhos
,
K.
Yamashita
, and
J.
Carrington
,
ChemPhysChem
180
,
2002
(
2009
).
58.
C.
Díaz
,
E.
Pijper
,
R. A.
Olsen
,
H. F.
Busnengo
,
D. J.
Auerbach
, and
G. -J.
Kroes
,
Science
326
,
832
(
2009
).
59.
E. R.
Cohen
,
T.
Cvitas
,
J. G.
Frey
,
B.
Holmström
,
K.
Kuchitsu
,
R.
Marquardt
,
I.
Mills
,
F.
Pavese
,
M.
Quack
,
J.
Stohner
,
H. L.
Strauss
,
M.
Takami
, and
A. J.
Thor
,
Quantities, Units and Symbols in Physical Chemistry
, 3rd ed. (
Royal Society of Chemistry
,
Cambridge
,
2007
).
60.
C. F.
McConville
,
D. P.
Woodruff
,
K. C.
Prince
,
G.
Paolucci
,
V.
Chab
,
M.
Surman
, and
A. M.
Bradshaw
,
Surf. Sci.
166
,
221
(
1986
).
61.
S.
Andersson
and
J. B.
Pendry
,
Phys. Rev. Lett.
43
,
363
(
1979
).
62.
J. C.
Tracy
,
J. Chem. Phys.
56
,
2748
(
1972
).
63.
C. M.
Truong
,
J. A.
Rodriguez
, and
D. W.
Goodman
,
Surf. Sci. Lett.
271
,
L385
(
1992
).
64.
S.
Hervé
and
R.
Marquardt
,
Mol. Phys.
103
,
1075
(
2005
).
65.
C. W.
Bauschlicher
, Jr.
,
J. Chem. Phys.
101
,
3250
(
1994
).
66.
W.
Müller
and
P. S.
Bagus
,
J. Vac. Sci. Technol. A
5
,
1053
(
1987
).
67.
A. P.
Graham
and
J. P.
Toennies
,
J. Chem. Phys.
114
,
1051
(
2001
).
68.
A. P.
Graham
and
J. P.
Toennies
,
Surf. Sci.
427–428
,
1
(
1999
).
69.
A. P.
Graham
,
F. M.
Hoffmann
,
J. P.
Toennies
,
G. P.
Williams
,
C.
Hirschmugl
, and
J.
Ellis
,
J. Chem. Phys.
108
,
7825
(
1998
).
70.
S. P.
Lewis
and
A. M.
Rappe
,
Phys. Rev. Lett.
77
,
5241
(
1996
).
71.
M.
Head-Gordon
and
J. C.
Tully
,
J. Chem. Phys.
96
,
3939
(
1992
).
72.
N. W.
McLachlan
,
Theory and Application of Mathieu Functions
(
Dover
,
New York
,
1964
).
You do not currently have access to this content.