Although never spectroscopically identified in the laboratory, hydrogenated nitrogen (HN2) is thought to be an important species in combustion chemistry. The classical barrier height (10.6±0.2kcalmol1) and exothermicity (3.6±0.2kcalmol1) for the HN2N2+H reaction are predicted by high level ab initio quantum mechanical methods [up to CCSDT(Q)]. Total energies are extrapolated to the complete basis set limit applying the focal point analysis. Zero-point vibrational energies are computed using fundamental (anharmonic) frequencies obtained from a quartic force field. Relativistic and diagonal Born–Oppenheimer corrections are also taken into account. The quantum mechanical barrier with these corrections is predicted to be 6.4±0.2kcalmol1 and the reaction exothermicity to be 8.8±0.2kcalmol1. The importance of these parameters for the thermal NOx decomposition (De-NOx) process is discussed. The unimolecular rate constant for dissociation of the HN2 molecule and its lifetime are estimated by canonical transition-state theory and Rice–Ramsperger–Kassel–Marcus theory. The lifetime of the HN2 molecule is here estimated to be 2.8×1010s at room temperature. Our result is in marginal agreement with the latest experimental kinetic modeling studies (τ=1.5×108s), albeit consistent with the very rough experimental upper limit (τ<0.5μs). For the dissociation reaction, kinetic isotope effects are investigated. Our analysis demonstrates that the DN2 molecule has a longer lifetime than the HN2 molecule. Thus, DN2 might be more readily identified experimentally. The ionization potential of the HN2 molecule is determined by analogous high level ab initio methods and focal point analysis. The adiabatic IP of HN2 is predicted to be 8.19±0.05eV, in only fair agreement with the experimental upper limit of 7.92 eV deduced from sychrothon-radiation-based photoionization mass spectrometry.

1.
J. A.
Miller
and
C. T.
Bowman
,
Pror. Energy Combust. Sci.
15
,
287
(
1989
).
2.
J. A.
Miller
,
R. J.
Kee
, and
C. K.
Westbrook
,
Annu. Rev. Phys. Chem.
41
,
345
(
1990
).
3.
J. A.
Miller
and
P.
Glarborg
,
Springer Ser. Chem. Phys.
61
,
318
(
1996
).
4.
J. A.
Miller
and
P.
Glarborg
,
Int. J. Quantum Chem.
31
,
757
(
1999
).
5.
S. P.
Walch
,
J. Chem. Phys.
93
,
2384
(
1990
).
6.
H.
Koizumi
,
G. C.
Schatz
, and
S. P.
Walch
,
J. Chem. Phys.
95
,
4130
(
1991
).
7.
S. P.
Walch
,
J. Chem. Phys.
95
,
4277
(
1991
).
8.
S. P.
Walch
and
H.
Partridge
,
Chem. Phys. Lett.
233
,
331
(
1995
).
9.
S. F.
Selgren
,
P. W.
McLoughlin
, and
G. I.
Gellene
,
J. Chem. Phys.
90
,
1624
(
1989
).
10.
A.
Quinto-Hernandez
,
A. M.
Wodtke
,
Y. Y.
Lee
,
T. P.
Huang
,
W. C.
Pan
, and
J. M.
Lin
,
J. Phys. Chem. A
113
,
3822
(
2009
).
11.
J. D.
Savee
,
R. D.
Thomas
,
J. E.
Mann
, and
R. E.
Continetti
,
J. Chem. Phys.
131
,
134301
(
2009
).
12.
J.
Gu
,
Y.
Xie
, and
H. F.
Schaefer
,
J. Chem. Phys.
108
,
8029
(
1998
).
13.
L. A.
Curtiss
,
D. L.
Drapcho
, and
J. A.
Pople
,
Chem. Phys. Lett.
103
,
437
(
1984
).
14.
G.
Li
and
H.
Guo
,
Chem. Phys. Lett.
347
,
443
(
2001
).
15.
T.
Stoecklin
and
A.
Voronin
,
Chem. Phys.
331
,
385
(
2007
).
16.
L. A.
Poveda
and
A. J. C.
Varandas
,
J. Phys. Chem. A
107
,
7923
(
2003
).
17.
P. J. S. B.
Caridade
,
S. P. J.
Rodrigues
,
F.
Sousa
, and
A. J. C.
Varandas
,
J. Phys. Chem. A
109
,
2356
(
2005
).
18.
P. J. S. B.
Caridade
,
L. A.
Poveda
,
S. P. J.
Rodrigues
, and
A. J. C.
Varandas
,
J. Phys. Chem. A
111
,
1172
(
2007
).
19.
V. C.
Mota
and
A. J. C.
Varandas
,
J. Phys. Chem. A
112
,
3768
(
2008
).
20.
G. E.
Scuseria
,
Chem. Phys. Lett.
176
,
27
(
1991
).
21.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
22.
G. E.
Scuseria
and
T. J.
Lee
,
J. Chem. Phys.
93
,
5851
(
1990
).
23.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
103
,
4572
(
1995
).
24.
X.
Zhang
,
A. T.
Maccarone
,
M. R.
Nimlos
,
S.
Kato
,
V. M.
Bierbaum
,
G. B.
Ellison
,
B.
Ruscic
,
A. C.
Simmonett
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
126
,
044312
(
2007
).
25.
K. L.
Bak
,
J.
Gauss
,
P.
Jørgensen
,
J.
Olsen
,
T.
Helgaker
, and
J. F.
Stanton
,
J. Chem. Phys.
114
,
6548
(
2001
).
26.
R. A.
Kendall
and
T. H.
Dunning
,
J. Chem. Phys.
96
,
6796
(
1992
).
27.
A. L. L.
East
and
W. D.
Allen
,
J. Chem. Phys.
99
,
4638
(
1993
).
28.
M. S.
Schuurman
,
S. R.
Muir
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
120
,
11586
(
2004
).
29.
J. M.
Gonzales
,
C.
Pak
,
R. S.
Cox
,
W. D.
Allen
,
H. F.
Schaefer
,
A. G.
Császár
, and
G.
Tarczay
,
Chem.-Eur. J.
9
,
2173
(
2003
).
30.
A. G.
Császár
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
108
,
9751
(
1998
).
31.
A. G.
Császár
,
G.
Tarczay
,
M. L.
Leininger
,
O. L.
Polyansky
,
J.
Tennyson
, and
W. D.
Allen
, in
Spectroscopy from Space
, edited by
J.
Demaison
and
K.
Sarka
(
Kluwer
,
Dordrecht
,
2007
), pp.
317
340
.
32.
J.
Bomble
,
J. F.
Stanton
,
M.
Kállay
, and
J.
Gauss
,
J. Chem. Phys.
123
,
054101
(
2005
).
33.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
123
,
214105
(
2005
).
34.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
35.
A. K.
Wilson
,
T.
van Mourik
, and
T. H.
Dunning
,
J. Mol. Struct.
388
,
339
(
1996
).
36.
D.
Feller
,
J. Chem. Phys.
98
,
7059
(
1993
).
37.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
38.
N. C.
Handy
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
84
,
4481
(
1986
).
39.
H.
Sellers
and
P.
Pulay
,
Chem. Phys. Lett.
103
,
463
(
1984
).
40.
S. A.
Perera
and
R. J.
Bartlett
,
Chem. Phys. Lett.
216
,
606
(
1993
).
41.
R. D.
Cowan
and
D. C.
Griffin
,
J. Opt. Soc. Am.
66
,
1010
(
1976
).
42.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
,
P. G.
Szalay
,
R. J.
Bartlett
, with contributions from
A. A.
Auer
,
D. B.
Bernholdt
,
O.
Christiansen
,
M. E.
Harding
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
D.
Jonsson
,
J.
Jusélius
,
W. J.
Lauderdale
,
T.
Metzroth
,
C.
Michauk
,
D. R.
Price
,
K.
Ruud
,
F.
Schiffmann
,
A.
Tajti
,
M. E.
Varner
,
J.
Vázquez
, and the integral packages: MOLECULE (
J.
Almlöf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), and ABACUS (
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
).
43.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
,
W. J.
Lauderdale
, and
R. J.
Bartlett
,
Int. J. Quantum Chem. Symp.
26
,
879
(
1992
).
44.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
120
,
6841
(
2004
).
45.
M.
Kállay
and
P. R.
Surjan
,
J. Chem. Phys.
115
,
2945
(
2001
).
46.
M.
Kállay
,
P. G.
Szalay
, and
P. R.
Surjan
,
J. Chem. Phys.
117
,
980
(
2002
).
47.
M.
Kállay
,
J.
Gauss
, and
P. G.
Szalay
,
J. Chem. Phys.
119
,
2991
(
2003
).
48.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
121
,
9257
(
2004
).
49.
K.
Sarka
and
J.
Demaison
, in
Computational Molecular Spectroscopy
, edited by
P.
Jensen
and
P. R.
Bunker
(
Wiley
,
Chichester
,
2000
), pp.
255
304
.
50.
W. D.
Allen
and
A. G.
Császár
,
J. Chem. Phys.
98
,
2983
(
1993
).
51.
INTDER2005 is a general program written by
W. D.
Allen
, which performs sundry vibrational analyses and higher order nonlinear transformations among force field representations.
52.
W. D.
Allen
,
A. G.
Császár
,
V.
Szalay
, and
I. M.
Mills
,
Mol. Phys.
89
,
1213
(
1996
).
53.
ANHARM is a FORTRAN program written for VPT2 analysis by
Y.
Yamaguchi
and
H. F.
Schaefer
, Center for Computational Quantum Chemistry, University of Georgia, Athens, GA 30602, USA,
2009
.
54.
D. A.
Clabo
,
W. D.
Allen
,
R. B.
Remington
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
Chem. Phys.
123
,
187
(
1988
).
55.
S. V.
Krasnoshchekov
and
N. F.
Stepanov
,
J. Phys. Chem. A
82
,
592
(
2008
).
56.
W. H.
Miller
,
R.
Hernandez
,
N. C.
Handy
,
D.
Jayatilaka
, and
A.
Willetts
,
Chem. Phys. Lett.
172
,
62
(
1990
).
57.
K. A.
Holbrook
,
M. J.
Pilling
, and
S. H.
Robertson
,
Unimolecular Reactions
, 2nd ed. (
Wiley
,
New York
,
1996
), pp.
39
77
.
58.
J. I.
Steinfeld
,
J. S.
Francisco
, and
W. L.
Hase
,
Chemical Kinetics and Dynamics
, 2nd ed. (
Prentice Hall
,
New Jersey
,
1999
), pp.
287
382
.
59.
MULTIWELL-2008.3 software,
2008
, designed and maintained by
J. R.
Barker
with contributions from
N. F.
Ortiz
,
J. M.
Preses
,
L. L.
Lohr
,
A.
Maranzana
, and
P. J.
Stimac
, University of Michigan, Ann Arbor, MI; http://aoss.engin.umich.edu/multiwell/.
60.
J. R.
Barker
,
Int. J. Chem. Kinet.
33
,
232
(
2001
).
61.
J. R.
Barker
,
L. M.
Yoder
, and
K. D.
King
,
J. Phys. Chem. A
105
,
796
(
2001
).
62.
W. H.
Miller
,
J. Am. Chem. Soc.
101
,
6810
(
1979
).
63.
T. J.
Lee
and
P. R.
Taylor
,
Int. J. Quantum Chem., Quantum Chem., Symp.
23
,
199
(
1989
).
64.
K.
Huber
and
G.
Herzberg
,
Molecular Spectra and Molecular Structure
, 4th ed. (
Van Nostrand
,
Princeton
,
1979
).
65.
T.
Amano
,
T.
Hirao
, and
J.
Takano
,
J. Mol. Spectrosc.
234
,
170
(
2005
).
66.
J. C.
Owrutsky
,
C. S.
Gudeman
,
C. C.
Martner
,
L. M.
Tack
,
N. H.
Rosenbaum
, and
R. J.
Saykally
,
J. Chem. Phys.
84
,
605
(
1986
).
67.
Y.
Kabbadj
,
T. R.
Huet
,
B. D.
Rehfuss
,
C. M.
Gabrys
, and
T.
Oka
,
J. Mol. Spectrosc.
163
,
180
(
1994
).
68.
V.
Brites
and
M.
Hochlaf
,
J. Phys. Chem. A
113
,
11107
(
2009
).
69.
T. J.
Sears
,
J. Opt. Soc. Am. B
2
,
786
(
1985
).
70.
S. C.
Foster
and
A. R. W.
McKellar
,
J. Chem. Phys.
81
,
3424
(
1984
).
71.
T.
Nakanaga
,
F.
Ito
,
K.
Sugawara
,
H.
Takeo
, and
C.
Matsumura
,
Chem. Phys. Lett.
169
,
269
(
1990
).
72.
D. J.
Nesbitt
,
H.
Petek
,
C. S.
Gudeman
,
C. B.
Moore
, and
R. J.
Saykally
,
J. Chem. Phys.
81
,
5281
(
1984
).
73.
T. J.
Sears
,
J. Chem. Phys.
82
,
5757
(
1985
).
You do not currently have access to this content.