We have performed Brownian dynamics simulations in order to investigate the formation of a pseudopolyrotaxane (PPRX) with cyclodextrins (CDs) and a polymer chain and the development of orientational order between PPRXs. The coarse-grained model is used to model the CDs and the polymer chain. In our simulations, we observe the formation of a rodlike PPRX with up to six rings for 40 monomer chains. After the formation of the PPRX, the processes of inclusion and dissociation repeat for the rings at the end of the chain. However, the PPRX has more than three rings and maintains the rodlike shape. With regard to the motion of rings in the PPRX, we observe two kinds of motions—oscillating motion and shifting motion. In the oscillating motion, the rings move around a particular position on the chain and display thermal fluctuation and collisions with neighboring rings. In the shifting motion, all rings shift to another location along the chain during the processes of inclusion and dissociation. In our simulations, we also observed that the orientational order between PPRXs develops at low temperatures.

1.
A.
Harada
,
J.
Li
, and
M.
Kamachi
,
Nature (London)
356
,
325
(
1992
).
2.
A.
Harada
,
J.
Li
, and
M.
Kamachi
,
Nature (London)
364
,
516
(
1993
).
3.
Y.
Kawaguchi
and
A.
Akira
,
Org. Lett.
2
,
1353
(
2000
).
4.
T.
Shimomura
,
T.
Akai
,
T.
Abe
, and
K.
Ito
,
J. Chem. Phys.
116
,
1753
(
2002
).
5.
Y.
Okumura
and
K.
Ito
,
Adv. Mater. (Weinheim, Ger.)
13
,
485
(
2001
).
6.
I.
Tomatsu
,
H.
Hashidzume
, and
A.
Harada
,
Macromolecules
38
,
5223
(
2005
).
7.
G. S.
Grest
and
K.
Kremer
,
Phys. Rev. A
33
,
3628
(
1986
).
8.
P.
Bonnet
,
C.
Jaime
, and
L. M.
Allory
,
J. Org. Chem.
66
,
689
(
2001
).
9.
P.
Bonnet
,
C.
Jaime
, and
L. M.
Allory
,
J. Org. Chem.
67
,
8602
(
2002
).
10.
C. P. A.
Anconi
,
C. S.
Nascimento
,
W. B.
De Almeida
, and
H. F.
Dos Santos
,
J. Phys. Chem. B
113
,
9762
(
2009
).
11.
Y.
Yu
,
C.
Chipot
,
W.
Cai
, and
X.
Shao
,
J. Phys. Chem. B
110
,
6372
(
2006
).
12.
Y.
Yu
,
W.
Cai
,
C.
Chipot
,
T.
Sun
, and
X.
Shao
,
J. Phys. Chem. B
112
,
5268
(
2008
).
13.
B.
Sellner
,
G.
Zifferer
,
A.
Kornherr
,
D.
Krois
, and
U. H.
Brinker
,
J. Phys. Chem. B
112
,
710
(
2008
).
14.
R.
Goetz
and
R.
Lipowsky
,
J. Chem. Phys.
108
,
7397
(
1998
).
15.
S.
Fujiwara
,
T.
Itoh
,
M.
Hashimoto
, and
R.
Horiuchi
,
J. Chem. Phys.
130
,
144901
(
2009
).
16.
G.
Srinivas
,
J. C.
Shelly
,
S. O.
Nielsen
,
D. E.
Discher
, and
M. L.
Klein
,
J. Phys. Chem. B
108
,
8153
(
2004
).
17.
M. A.
Horsch
,
Z.
Zhang
,
C. R.
Iacovella
, and
S. C.
Glotzer
,
J. Chem. Phys.
121
,
11455
(
2004
).
18.
V.
Kalra
,
S.
Mendez
,
F.
Escobedo
, and
Y.
Joo
,
J. Chem. Phys.
128
,
164909
(
2008
).
19.
D.
Rigby
and
R. J.
Roe
,
J. Chem. Phys.
87
,
7285
(
1987
).
21.
A.
Harada
,
J.
Li
, and
M.
Kamachi
,
Macromolecules
27
,
4538
(
1994
).
22.
J.
Pozuelo
,
F.
Mendicuti
, and
W. L.
Mattice
,
Macromolecules
30
,
3685
(
1997
).
23.
J.
Pozuelo
,
F.
Mendicuti
, and
E.
Saiz
,
Polymer
43
,
523
(
2002
).
24.
H.
Okumura
,
Y.
Kawaguchi
, and
A.
Harada
,
Macromolecules
34
,
6338
(
2001
).
25.
I. N.
Topchieva
,
A. E.
Tonelli
,
I. G.
Panova
,
E. V.
Matuchina
,
F. A.
Kalashnikov
,
V. I.
Gerasimov
,
C. C.
Rusa
,
M.
Rusa
, and
M. A.
Hunt
,
Langmuir
20
,
9036
(
2004
).
26.
J.
Peet
,
C. C.
Rusa
,
M. A.
Hunt
,
A. E.
Tonelli
, and
C. M.
Balik
,
Macromolecules
38
,
537
(
2005
).
27.
A.
Harada
,
J.
Li
, and
M.
Kamachi
,
J. Am. Chem. Soc.
116
,
3192
(
1994
).
You do not currently have access to this content.