We use density functional theory to examine 24 transition states for methane dissociation on five different metal surfaces. In our calculations, the nonlocal exchange-correlation effects are treated within the generalized gradient approximation using the Perdew–Burke–Ernzerhof functional. In all cases, the minimum energy path for dissociation is over a top site. The barriers are large, 0.66–1.12 eV, and relatively insensitive to the rotational orientation of the (nonreacting) methyl group and the azimuthal orientation of the reactive C–H bond. There is a strong preference on the Pt surfaces for the methyl fragment to bond on the top site, while on the Ni surfaces there is a preference for the hollow or bridge sites. Thus, during the dissociation on Pt, only the low mass H atom needs to significantly move or tunnel, while on Ni, both the dissociating H and the methyl fragment move away from the top site. For all 24 configurations there is a strong force at the transition state to pucker the metal atom over which the reaction occurs. The resulting magnitude of the variation in the barrier height with the motion of this atom varies a bit from surface-to-surface, but is of the order of 1 eV/Å. We derive a model for the effective reaction barrier height that includes the effects of lattice motion and substrate temperature and compare with recent experiments and other theoretical studies.

1.
J. D.
Beckerle
,
Q. Y.
Yang
,
A. D.
Johnson
, and
S. T.
Ceyer
,
J. Chem. Phys.
86
,
7236
(
1987
).
2.
M. B.
Lee
,
Q. Y.
Yang
, and
S. T.
Ceyer
,
J. Chem. Phys.
87
,
2724
(
1987
).
3.
J. D.
Beckerle
,
A. D.
Johnson
,
Q. Y.
Yang
, and
S. T.
Ceyer
,
J. Chem. Phys.
91
,
5756
(
1989
).
4.
J. D.
Beckerle
,
A. D.
Johnson
, and
S. T.
Ceyer
,
Phys. Rev. Lett.
62
,
685
(
1989
).
5.
J. H.
Larsen
and
I.
Chorkendorff
,
Surf. Sci. Rep.
35
,
163
(
1999
).
6.
P. M.
Holmblad
,
J.
Wambach
, and
I.
Chorkendorff
,
J. Chem. Phys.
102
,
8255
(
1995
).
7.
B. Ø.
Nielsen
,
A. C.
Luntz
,
P. M.
Holmblad
, and
I.
Chorkendorff
,
Catal. Lett.
32
,
15
(
1995
).
8.
P. M.
Holmblad
,
J. H.
Larsen
, and
I.
Chorkendorff
,
J. Chem. Phys.
104
,
7289
(
1996
).
9.
R. R.
Smith
,
D. R.
Killelea
,
D. F.
DelSesto
, and
A. L.
Utz
,
Science
304
,
992
(
2004
).
10.
L. B. F.
Juurlink
,
R. R.
Smith
,
D. R.
Killelea
, and
A. L.
Utz
,
Phys. Rev. Lett.
94
,
208303
(
2005
).
11.
L. B. F.
Juurlink
,
P. R.
McCabe
,
R. R.
Smith
,
C. L.
DiCologero
, and
A. L.
Utz
,
Phys. Rev. Lett.
83
,
868
(
1999
).
12.
R.
Bisson
,
M.
Sacchi
,
T. T.
Dang
,
B.
Yoder
,
P.
Maroni
, and
R. D.
Beck
,
J. Phys. Chem. A
111
,
12679
(
2007
).
13.
R. D.
Beck
,
P.
Maroni
,
D. C.
Papageorgopoulos
,
T. T.
Dang
,
M. P.
Schmid
, and
T. R.
Rizzo
,
Science
302
,
98
(
2003
).
14.
M. P.
Schmid
,
P.
Maroni
,
R. D.
Beck
, and
T. R.
Rizzo
,
J. Chem. Phys.
117
,
8603
(
2002
).
15.
P.
Maroni
,
D. C.
Papageorgopoulos
,
M.
Sacchi
,
T. T.
Dang
,
R. D.
Beck
, and
T. R.
Rizzo
,
Phys. Rev. Lett.
94
,
246104
(
2005
).
16.
J.
Harris
,
J.
Simon
,
A. C.
Luntz
,
C. B.
Mullins
, and
C. T.
Rettner
,
Phys. Rev. Lett.
67
,
652
(
1991
).
17.
A. C.
Luntz
and
D. S.
Bethune
,
J. Chem. Phys.
90
,
1274
(
1989
).
18.
A. C.
Luntz
and
H. F.
Winters
,
J. Chem. Phys.
101
,
10980
(
1994
).
19.
A. C.
Luntz
,
J. Chem. Phys.
102
,
8264
(
1995
).
21.
J. F.
Weaver
,
A. F.
Carlsson
, and
R. J.
Madix
,
Surf. Sci. Rep.
50
,
107
(
2003
).
22.
A. V.
Hamza
and
R. J.
Madix
,
Surf. Sci.
179
,
25
(
1987
).
23.
C. R.
Arumainayagam
,
M. C.
McMaster
,
G. R.
Schoofs
, and
R. J.
Madix
,
Surf. Sci.
222
,
213
(
1989
).
24.
C. -L.
Kao
and
R. J.
Madix
,
Surf. Sci.
557
,
215
(
2004
).
25.
A. F.
Carlsson
and
R. J.
Madix
,
Surf. Sci.
458
,
91
(
2000
).
26.
J.
Higgins
,
A.
Conjusteau
,
G.
Scoles
, and
S. L.
Bernasek
,
J. Chem. Phys.
114
,
5277
(
2001
).
27.
D. J.
Oakes
,
M. R. S.
McCoustra
, and
M. A.
Chesters
,
Faraday Discuss.
96
,
325
(
1993
).
28.
G.
Henkelman
and
H.
Jónsson
,
Phys. Rev. Lett.
86
,
664
(
2001
).
29.
S.
Nave
and
B.
Jackson
,
Phys. Rev. Lett.
98
,
173003
(
2007
).
30.
S.
Nave
and
B.
Jackson
,
J. Chem. Phys.
127
,
224702
(
2007
).
31.
S.
Nave
and
B.
Jackson
,
J. Chem. Phys.
130
,
054701
(
2009
).
32.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
);
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
);
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
);
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
33.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
34.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
35.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
36.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
37.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
38.
G.
Pacchioni
,
S. -C.
Chung
,
S.
Krüger
, and
N.
Rösch
,
Surf. Sci.
392
,
173
(
1997
).
39.
R. A.
Olsen
,
G. J.
Kroes
, and
E. J.
Baerends
,
J. Chem. Phys.
111
,
11155
(
1999
).
40.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
41.
H.
Jónsson
,
G.
Mills
, and
K. W.
Jacobsen
, in
Classical and Quantum Dynamics in Condensed Phase Simulations
, edited by
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Coker
(
World Scientific
,
Singapore
,
1998
), pp.
385
404
.
42.
A. T.
Anghel
,
D. J.
Wales
,
S. J.
Jenkins
, and
D. A.
King
,
Phys. Rev. B
71
,
113410
(
2005
).
43.
JANAF Thermochemical Tables
, 3rd ed., edited by
M. W.
Chase
, Jr.
,
C. A.
Davies
,
J. R.
Downey
,
D. J.
Frurip
,
R. A.
McDonald
, and
A. N.
Syverud
(
National Bureau of Standards
,
Washington, D.C.
,
1985
), Vol.
14
.
44.
D. C.
Patton
,
D. V.
Porezag
, and
M. R.
Pederson
,
Phys. Rev. B
55
,
7454
(
1997
).
45.
G.
Herzberg
,
Molecular Spectra and Molecular Structure II
(
Lancaster Van Nostrand
,
New York
,
1966
).
46.
M.
Hand
and
J.
Harris
,
J. Chem. Phys.
92
,
7610
(
1990
).
47.
A. C.
Luntz
and
J.
Harris
,
Surf. Sci.
258
,
397
(
1991
).
48.
P.
Kratzer
,
B.
Hammer
, and
J. K.
Nørskov
,
J. Chem. Phys.
105
,
5595
(
1996
).
49.
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jónsson
,
J. Chem. Phys.
124
,
044706
(
2006
).
50.
R. M.
Watwe
,
H. S.
Bengaard
,
J. R.
Rostrup-Nielsen
,
J. A.
Dumesic
, and
J. K.
Nørskov
,
J. Catal.
189
,
16
(
2000
).
51.
H. S.
Bengaard
,
J. K.
Nørskov
,
J.
Sehested
,
B. S.
Clausen
,
L. P.
Nielsen
,
A. M.
Molenbroek
, and
J. R.
Rostrup-Nielsen
,
J. Catal.
209
,
365
(
2002
).
52.
F.
Abild-Pedersen
,
O.
Lytken
,
J.
Engbæk
,
G.
Nielsen
,
I.
Chorkendorff
, and
J. K.
Nørskov
,
Surf. Sci.
590
,
127
(
2005
).
53.
H.
Yang
and
J. L.
Whitten
,
J. Chem. Phys.
96
,
5529
(
1992
).
54.
H.
Yang
and
J. L.
Whitten
,
Surf. Sci.
255
,
193
(
1991
).
55.
A. B.
Anderson
and
J. J.
Maloney
,
J. Phys. Chem.
92
,
809
(
1988
).
56.
M. -S.
Liao
,
C. -T.
Au
, and
C. -F.
Ng
,
Chem. Phys. Lett.
272
,
445
(
1997
).
57.
G.
Psofogiannakis
,
A.
St-Amant
, and
M.
Ternan
,
J. Phys. Chem. B
110
,
24593
(
2006
).
58.
M. A.
Petersen
,
S. J.
Jenkins
, and
D. A.
King
,
J. Phys. Chem. B
108
,
5909
(
2004
).
59.
R.
Bisson
,
M.
Sacchi
, and
R. D.
Beck
, “
State-resolved reactivity of CH4 on Pt(110)-(1×2): The role of surface orientation and impact site
,”
J. Chem. Phys.
(to be published).
60.
A. K.
Tiwari
,
S.
Nave
, and
B.
Jackson
,
Phys. Rev. Lett.
103
,
253201
(
2009
).
61.
V. L.
Campbell
and
A. L.
Utz
(private communication).
You do not currently have access to this content.