The “weighted ensemble” method, introduced by Huber and Kim [Biophys. J.70, 97 (1996)], is one of a handful of rigorous approaches to path sampling of rare events. Expanding earlier discussions, we show that the technique is statistically exact for a wide class of Markovian and non-Markovian dynamics. The derivation is based on standard path-integral (path probability) ideas, but recasts the weighted-ensemble approach as simple “resampling” in path space. Similar reasoning indicates that arbitrary nonstatic binning procedures, which merely guide the resampling process, are also valid. Numerical examples confirm the claims, including the use of bins which can adaptively find the target state in a simple model.

1.
G. A.
Huber
and
S.
Kim
,
Biophys. J.
70
,
97
(
1996
).
2.
A.
Rojnuckarin
,
S.
Kim
, and
S.
Subramaniam
,
Proc. Natl. Acad. Sci. U.S.A.
95
,
4288
(
1998
).
3.
B. W.
Zhang
,
D.
Jasnow
, and
D. M.
Zuckerman
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
18043
(
2007
).
4.
R. J.
Allen
,
P. B.
Warren
, and
P. R.
ten Wolde
,
Phys. Rev. Lett.
94
,
018104
(
2005
).
5.
F. A.
Escobedo
,
E. E.
Borrero
, and
J. C.
Araque
,
J. Phys.: Condens. Matter
21
,
333101
(
2009
).
6.
A.
Warmflash
,
P.
Bhimalapuram
, and
A. R.
Dinner
,
J. Chem. Phys.
127
,
154112
(
2007
).
7.
A.
Dickson
,
A.
Warmflash
, and
A. R.
Dinner
,
J. Chem. Phys.
130
,
074104
(
2009
).
8.
H.
Kahn
,
Use Of Different Monte Carlo Methods
,
Symposium on Monte Carlo Methods
(
Wiley
,
New York
,
1956
), pp.
146
190
.
9.
L. R.
Pratt
,
J. Chem. Phys.
85
,
5045
(
1986
).
10.
J.
Schlitter
,
M.
Engels
,
P.
Krüger
,
E.
Jacoby
, and
A.
Wollmer
,
Mol. Simul.
10
,
291
(
1993
).
11.
S.
Izrailev
,
S.
Stepaniants
,
M.
Balsera
,
Y.
Oono
, and
K.
Schulten
,
Biophys. J.
72
,
1568
(
1997
).
12.
C.
Dellago
,
P. G.
Bolhuis
,
F. S.
Csajka
, and
D.
Chandler
,
J. Chem. Phys.
108
,
1964
(
1998
).
13.
D. M.
Zuckerman
and
T. B.
Woolf
,
J. Chem. Phys.
111
,
9475
(
1999
).
14.
P.
Eastman
,
N.
Gronbech-Jensen
, and
S.
Doniach
,
J. Chem. Phys.
114
,
3823
(
2001
).
15.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
,
Phys. Rev. B
66
,
052301
(
2002
).
16.
17.
T. S.
van Erp
,
D.
Moroni
, and
P. G.
Bolhuis
,
J. Chem. Phys.
118
,
7762
(
2003
).
18.
A. K.
Faradjian
and
R.
Elber
,
J. Chem. Phys.
120
,
10880
(
2004
).
19.
Z.
Yang
,
P.
MÃjek
, and
I.
Bahar
,
PLOS Comput. Biol.
5
,
e1000360
(
2009
).
20.
N.
Madras
and
G.
Slade
,
The Self-Avoiding Walk
(
Birkhäuser
,
Boston
,
1996
).
21.
D.
Forster
,
Hydrodynamic Fluctuations, Broken Symmetry, And Correlation Functions
(
Westview
,
Boulder, CO
,
1995
).
22.
D.
Bhatt
,
B. W.
Zhang
, and
D. M.
Zuckerman
, e-print arXiv:0910.5255v1/physics.bio-ph.
23.
J. S.
Liu
,
Monte Carlo Strategies in Scientific Computing
(
Springer
,
Berlin
,
2002
).
24.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Academic
,
Boston
,
2001
).
25.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
(
North Holland
,
Amsterdam
,
1992
).
26.
M. I.
Dykman
,
P. V. E.
McClintock
,
V. N.
Smelyanski
,
N. D.
Stein
, and
N. G.
Stocks
,
Phys. Rev. Lett.
68
,
2718
(
1992
).
27.
R. F.
Fox
,
I. R.
Gatland
,
R.
Roy
, and
G.
Vemuri
,
Phys. Rev. A
38
,
5938
(
1988
).
28.
R.
Crehuet
,
M. J.
Field
, and
E.
Pellegrini
,
Phys. Rev. E
69
,
012101
(
2004
).
29.
B. W.
Zhang
,
D.
Jasnow
, and
D. M.
Zuckerman
,
J. Chem. Phys.
126
,
074504
(
2007
).
30.
F. T.
Wall
and
J. J.
Erpenbeck
,
J. Chem. Phys.
30
,
634
(
1959
).
31.
P.
Grassberger
,
Phys. Rev. E
56
,
3682
(
1997
).
32.
P.
Grassberger
,
Comput. Phys. Commun.
147
,
64
(
2002
).
33.
E. E.
Borrero
and
F. A.
Escobedo
,
J. Chem. Phys.
127
,
164101
(
2007
).
34.
E. E.
Borrero
and
F. A.
Escobedo
,
J. Chem. Phys.
129
,
024115
(
2008
).
35.
F.
Aurenhammer
,
ACM Comput. Surv.
23
,
345
(
1991
).
36.
L. Y.
Chen
,
P. L.
Nash
, and
N. J. M.
Horing
,
J. Chem. Phys.
123
,
094104
(
2005
).
You do not currently have access to this content.