A variety of methods (in total seven) comprising different combinations of internal and Cartesian coordinates are tested for interpolation and alignment in connection attempts for polypeptide rearrangements. We consider Cartesian coordinates, the internal coordinates used in CHARMM, and natural internal coordinates, each of which has been interfaced to the OPTIM code and compared with the corresponding results for united-atom force fields. We show that aligning the methylene hydrogens to preserve the sign of a local dihedral angle, rather than minimizing a distance metric, provides significant improvements with respect to connection times and failures. We also demonstrate the superiority of natural coordinate methods in conjunction with internal alignment. Checking the potential energy of the interpolated structures can act as a criterion for the choice of the interpolation coordinate system, which reduces failures and connection times significantly.

1.
F.
Noé
and
S.
Fischer
,
Curr. Opin. Struct. Biol.
18
,
154
(
2008
).
2.
D.
Prada-Gracia
,
J.
Gómez-Gardenes
,
P.
Echenique
, and
F.
Fernando
,
PLOS Comput. Biol.
5
,
e1000415
(
2009
).
3.
R. E.
Kunz
and
R. S.
Berry
,
J. Chem. Phys.
103
,
1904
(
1995
).
4.
6.
D. J.
Wales
and
J. P. K.
Doye
,
J. Chem. Phys.
119
,
12409
(
2003
).
7.
D.
Wales
,
Int. Rev. Phys. Chem.
25
,
237
(
2006
).
8.
D. J.
Wales
,
Energy Landscapes
(
Cambridge University Press
,
Cambridge
,
2003
).
9.
V. S.
Pande
and
D. S.
Rokhsar
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
1273
(
1999
).
10.
W.
Swope
,
J.
Pitera
,
F.
Suits
,
M.
Pitman
,
M.
Eleftheriou
,
B.
Fitch
,
R.
Germain
,
A.
Rayshubski
,
T.
Ward
,
Y.
Zhestkov
, and
R.
Zhou
,
J. Phys. Chem. B
108
,
6582
(
2004
).
11.
S. V.
Krivov
and
M.
Karplus
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
14766
(
2004
).
12.
J. N.
Murrell
and
K. J.
Laidler
,
Trans. Faraday Soc.
64
,
371
(
1968
).
13.
D. J.
Wales
, OPTIM, a program for optimizing geometries and calculating pathways, http://www-wales.ch.cam.ac.uk/software.html,
2009
.
14.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
,
Phys. Rev. B
66
,
052301
(
2002
).
15.
B.
Peters
,
A. T.
Bell
, and
A.
Chakraborty
,
J. Chem. Phys.
121
,
4453
(
2004
).
16.
E. F.
Koslover
and
D. J.
Wales
,
J. Chem. Phys.
127
,
134102
(
2007
).
17.
S. A.
Trygubenko
and
D. J.
Wales
,
J. Chem. Phys.
120
,
2082
(
2004
).
18.
R.
Elber
and
M.
Karplus
,
Chem. Phys. Lett.
139
,
375
(
1987
).
19.
R.
Czerminski
and
R.
Elber
,
J. Chem. Phys.
92
,
5580
(
1990
).
20.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
111
,
7010
(
1999
).
21.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
22.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
23.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
115
,
9657
(
2001
).
25.
P.
Pulay
,
G.
Foragasi
,
F.
Pang
, and
J. E.
Boggs
,
J. Am. Chem. Soc.
101
,
2550
(
1979
).
26.
P.
Pulay
and
G.
Fogarasi
,
J. Chem. Phys.
96
,
2856
(
1992
).
27.
G.
Fogarasi
,
X.
Zhou
,
P. W.
Taylor
, and
P.
Pulay
,
J. Am. Chem. Soc.
114
,
8191
(
1992
).
28.
E. F.
Koslover
and
D. J.
Wales
,
J. Chem. Phys.
127
,
234105
(
2007
).
29.
Y.
Duan
,
C.
Wu
,
S.
Chowdhury
,
M.
Lee
,
G.
Xiong
,
W.
Zhang
,
R.
Yang
,
P.
Cieplak
,
R.
Luo
, and
T.
Lee
,
J. Comput. Chem.
24
,
1999
(
2003
).
30.
E.
Neria
,
S.
Fischer
, and
M.
Karplus
,
J. Chem. Phys.
105
,
1902
(
1996
).
31.
B. R.
Brooks
,
R. E.
Bruccoleri
,
B. D.
Olafson
,
D. J.
States
,
S. S.
Swaminathan
, and
M.
Karplus
,
J. Comput. Chem.
4
,
187
(
1983
).
32.
33.
M.
Balbirnie
,
R.
Grothe
, and
D. S.
Eisenberg
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
2375
(
2001
).
34.
R.
Nelson
,
M. R.
Sawaya
,
M.
Balbirnie
,
A. O.
Madsen
,
C.
Riekel
,
R.
Grothe
, and
D.
Eisenberg
,
Nature (London)
435
,
773
(
2005
).
35.
A. G.
Cochran
,
N. J.
Skelton
, and
M. A.
Starovasnik
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
5578
(
2001
).
36.
C. D.
Snow
,
L.
Qiu
,
D.
Du
,
F.
Gai
,
S. J.
Hagen
, and
V. S.
Pande
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
4077
(
2004
).
37.
P.
Valtazanos
and
K.
Ruedenburg
,
Theor. Chim. Acta
69
,
281
(
1986
).
38.
J.
Nocedal
,
Math. Comput.
35
,
773
(
1980
).
39.
D.
Liu
and
J.
Nocedal
,
Math. Program.
45
,
503
(
1989
).
40.
D.
Sheppard
,
R.
Terrell
, and
G.
Henkelman
,
J. Chem. Phys.
128
,
134106
(
2008
).
41.
L. J.
Munro
and
D. J.
Wales
,
Phys. Rev. B
59
,
3969
(
1999
).
42.
Y.
Kumeda
,
L. J.
Munro
, and
D. J.
Wales
,
Chem. Phys. Lett.
341
,
185
(
2001
).
43.
Y.
Kumeda
and
D. J.
Wales
,
Chem. Phys. Lett.
374
,
125
(
2003
).
44.
E.
Dijkstra
,
Numer. Math.
1
,
269
(
1959
).
45.
J. M.
Carr
,
S. A.
Trygubenko
, and
D. J.
Wales
,
J. Chem. Phys.
122
,
234903
(
2005
).
46.
K.
Németh
,
O.
Coulaud
,
G.
Monard
, and
J. G.
Ángyán
,
J. Chem. Phys.
113
,
5598
(
2000
).
47.
E. F.
Koslover
, M.Phil. thesis,
University of Cambridge
, Cambridge,
2007
.
48.
E. B.
Wilson
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations
(
Dover
,
New York
,
1980
).
49.
I. N.
Shindyalov
and
P. E.
Bourne
,
Protein Eng.
11
,
739
(
1998
).
50.
F.
Teichert
,
U.
Bastello
, and
M.
Porto
,
BMC Bioinf.
8
,
425
(
2007
).
51.
W. R.
Taylor
and
C. A.
Orengo
,
J. Mol. Biol.
208
,
1
(
1989
).
52.
P. R.
Bunker
and
P.
Jensen
,
Molecular Symmetry and Spectroscopy
, 2nd ed. (
NRC Research
,
Ottawa
,
1998
).
53.
E.
Małolepsza
,
B.
Strodel
,
M.
Khalili
,
S.
Trygubenko
,
S.
Fejer
, and
D. J.
Wales
, “
Symmetrisation of the AMBER and CHARMM force fields
,”
J. Comput. Chem.
(in press).
54.
See supplementary material at http://dx.doi.org/10.1063/1.3273617 for details of the DNEB parameters and the tests used to compare alignment according to distance metrics and the fixed hydrogen labels.
55.
R. E.
Leone
and
P. v. R.
Schleyer
,
Angew. Chem., Int. Ed. Engl.
9
,
860
(
1970
).
56.
F.
Noé
,
F.
Ille
,
J. C.
Smith
, and
S.
Fischer
,
Proteins: Struct., Funct., Bioinf.
59
,
534
(
2005
).
57.
B.
Strodel
,
C. S.
Whittleston
, and
D. J.
Wales
,
J. Am. Chem. Soc.
129
,
16005
(
2007
).
58.
T.
Lazaridis
and
M.
Karplus
,
Proteins: Struct., Funct., Genet.
35
,
133
(
1999
).
59.
A.
Onufriev
,
D.
Bashford
, and
D. A.
Case
,
Proteins
55
,
383
(
2004
).
60.
D.
Case
,
T.
Darden
,
T. C.
Cheatham
 III
,
C.
Simmerling
,
J.
Wang
,
R.
Duke
,
R.
Luo
,
K.
Merz
,
D.
Pearlman
,
M.
Crowley
,
R.
Walker
,
W.
Zhang
,
B.
Wang
,
S.
Hayik
,
A.
Roitberg
,
G.
Seabra
,
K.
Wong
,
F.
Paesani
,
X.
Wu
,
S.
Brozell
,
V.
Tsui
,
H.
Gohlke
,
L.
Yang
,
C.
Tan
,
J.
Mongan
,
V.
Hornak
,
G.
Cui
,
P.
Beroza
,
D.
Mathews
,
C.
Schafmeister
,
W.
Ross
and
P.
Kollman
, AMBER9, University of California,
2006
.
61.
D.
Pearlman
,
D.
Case
,
J.
Caldwell
,
W.
Ross
,
T. C.
Cheatham
 III
,
S.
DeBolt
,
D.
Ferguson
,
G.
Seibel
, and
P.
Kollman
,
Comput. Phys. Commun.
91
,
1
(
1995
).
62.
D.
Case
,
T. C.
Cheatham
 III
,
T.
Darden
,
H.
Gohlke
,
R.
Luo
,
K. M.
Merz
, Jr.
,
A.
Onufriev
,
C.
Simmerling
,
B.
Wang
, and
R.
Woods
,
J. Comput. Chem.
26
,
1668
(
2005
).
63.
J. M.
Carr
and
D. J.
Wales
,
J. Phys. Chem. B
112
,
8760
(
2008
).

Supplementary Material

You do not currently have access to this content.