Information about intermolecular potentials is usually obtained through the analysis of the absorption line shapes recorded in the frequency domain. This approach is also adopted to study the effects of motional narrowing and speed dependence of the pressure broadening coefficients. On the other hand, time domain measurements are directly related to molecular collisions and are therefore frequently employed to study molecular relaxation rates, as well as the effects of velocity changing collisions and the speed dependence of the absorption cross sections. Intrapulse quantum cascade laser spectrometers are able to produce both saturation and molecular alignment of the gas sample. This is due to the rapid sweep of the radiation through the absorption features. In the present work the frequency down-chirped radiation emitted by an intrapulsed quantum cascade laser operating near 7.8μm is employed to investigate the collisional relaxation processes, and the collisional narrowing, in the 150,15161,16 and 151,15160,16 doublet in the water vapor ν2 band. The effects of He, Ne, Ar, N2, and CO2 as collisional partners are investigated. The experimental results clearly indicate the dependence of the collisional cross sections upon the chirp rate. They also demonstrate that by using different chirp rates it is possible to gain information about the intermolecular processes driving the molecular collisions and the related energy transfer.

1.
J. M.
Hartman
,
C.
Boulet
, and
D.
Robert
,
Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Applications
(
Elsevier
,
New York
,
2008
).
2.
3.
A. S.
Pine
,
J. Mol. Spectrosc.
82
,
435
(
1980
).
4.
P. R.
Berman
,
Appl. Phys. (Berlin)
6
,
283
(
1975
).
5.
H. M.
Pickett
,
J. Chem. Phys.
73
,
6090
(
1980
).
6.
P.
Duggan
,
P. M.
Sinclair
,
R.
Berman
,
A. D.
May
, and
J. R.
Drummond
,
J. Mol. Spectrosc.
186
,
90
(
1997
).
7.
D.
Pieroni
,
Nguyen-Van-Thanh
,
C.
Brodbeck
,
C.
Claveau
,
A.
Valentin
,
J. M.
Hartmann
,
T.
Gabard
,
J. -P.
Champion
,
D.
Bermejo
, and
J. -L.
Domenech
,
J. Chem. Phys.
110
,
7717
(
1999
).
8.
L. R.
Brown
,
D. C.
Benner
,
V. M.
Devi
,
M. A. H.
Smith
, and
R. A.
Toth
,
J. Mol. Struct.
742
,
111
(
2005
).
9.
P. W.
Anderson
,
Phys. Rev.
76
,
647
(
1949
).
10.
C. J.
Tsao
and
B.
Curnutte
,
J. Quant. Spectrosc. Radiat. Transf.
2
,
41
(
1962
).
11.
J. S.
Murphy
and
J. E.
Boggs
,
J. Chem. Phys.
47
,
691
(
1967
).
12.
D.
Robert
and
J.
Bonamy
,
J. Phys. (Paris)
40
,
923
(
1979
).
13.
C.
Luo
,
R.
Wehr
,
J. R.
Drummond
,
A. D.
May
,
F.
Thibault
,
J.
Boissoles
,
J. M.
Launay
,
C.
Boulet
,
J. -P.
Bouanich
, and
J. -M.
Hartman
,
J. Chem. Phys.
115
,
2198
(
2001
).
14.
J. -P.
Bouanich
,
J.
Salem
,
H.
Aroui
,
J.
Walrand
, and
G.
Blanquet
,
J. Quant. Spectrosc. Radiat. Transf.
84
,
195
(
2004
).
15.
S.
Green
,
J. Chem. Phys.
73
,
2740
(
1980
).
16.
D. R.
Flower
,
G.
Bourhis
, and
J. -M.
Launay
,
Comput. Phys. Commun.
131
,
187
(
2000
).
17.
F.
Thibault
,
B.
Calil
,
M.
Chrysos
,
J. -M.
Hartman
, and
J. -P.
Bouanich
,
Phys. Chem. Chem. Phys.
3
,
3924
(
2001
).
18.
R. Z.
Martinez
,
J. L.
Domenech
,
D.
Bermejo
,
F.
Thilbault
,
J. -P.
Bouanich
, and
C.
Boulet
,
J. Chem. Phys.
119
,
10563
(
2003
).
19.
R. R.
Ernst
,
Adv. Magn. Reson.
2
,
1
(
1966
).
20.
R. L.
Shoemaker
, in
Coherent Transient Infrared Spectroscopy, in Laser and Coherence Spectroscopy
, edited by
J. I.
Steinfeld
(
Plenum
,
New York
,
1978
), pp.
197
371
.
21.
22.
J. W. C.
Johns
,
A. R. W.
McKellar
,
T.
Oka
, and
M.
Römheld
,
J. Chem. Phys.
62
,
1488
(
1975
).
23.
S. M.
Freund
,
J. W. C.
Johns
,
A. R. W.
McKellar
, and
T.
Oka
,
J. Chem. Phys.
59
,
3445
(
1973
).
24.
F.
Rohart
,
H.
Mäder
, and
H. W.
Nicolaisen
,
J. Chem. Phys.
101
,
6475
(
1994
).
25.
G.
Duxbury
,
N.
Langford
,
M. T.
McCulloch
, and
S.
Wright
,
Chem. Soc. Rev.
34
,
921
(
2005
).
26.
M. T.
McCulloch
,
G.
Duxbury
, and
N.
Langford
,
Mol. Phys.
104
,
2767
(
2006
).
27.
G.
Duxbury
,
N.
Langford
,
M. T.
McCulloch
, and
S.
Wright
,
Mol. Phys.
105
,
741
(
2007
).
28.
G.
Duxbury
,
N.
Langford
, and
K.
Hay
,
J. Mod. Opt.
55
,
3293
(
2008
).
29.
F. A.
Blum
,
K. W.
Nill
,
P. L.
Kelley
,
A. R.
Calawa
, and
T. C.
Harman
,
Science
177
,
694
(
1972
).
30.
R. S.
Eng
,
A. R.
Calawa
,
T. C.
Harman
,
P. L.
Kelley
, and
A.
Javan
,
Appl. Phys. Lett.
21
,
303
(
1972
).
31.
R. S.
Eng
,
P. L.
Kelley
,
A.
Mooradian
,
A. R.
Calawa
, and
T. C.
Harman
,
Chem. Phys. Lett.
19
,
524
(
1973
).
32.
R. S.
Eng
,
P. L.
Kelly
,
A. R.
Calawa
,
T. C.
Harman
, and
K. W.
Nill
,
Mol. Phys.
28
,
653
(
1974
).
33.
L.
Moretti
,
A.
Sasso
,
L.
Gianfrani
, and
R.
Ciurylo
,
J. Mol. Spectrosc.
205
,
20
(
2001
).
34.
C.
Claveau
,
A.
Henry
,
M.
Lepère
,
A.
Valentin
, and
D.
Hurtmans
,
J. Mol. Spectrosc.
212
,
171
(
2002
).
35.
D.
Lisak
,
G.
Risciano
, and
A.
Sasso
,
J. Mol. Spectrosc.
227
,
162
(
2004
).
36.
S.
Wright
,
M. T.
McCulloch
,
G.
Duxbury
, and
N.
Langford
,
IEEE, Quantum Electronics Conference, 2005
, EQEC '05, European,
2005
, p.
212
.
37.
N.
Tasinato
,
A.
Pietropolli Charmet
,
P.
Stoppa
, and
S.
Giorgianni
, “Visual Lineshape Fitting Program”: J46, The 20th International Conference on High Resolution Molecular Spectroscopy, Prague (Czech Republic),
2008
, p. 240.
38.
T.
Köhler
and
H.
Mäder
,
Mol. Phys.
86
,
287
(
1995
).
39.
G.
Duxbury
,
N.
Langford
,
K.
Hay
, and
N.
Tasinato
,
J. Mod. Opt.
56
,
2034
(
2009
).
40.
N.
Tasinato
,
K. G.
Hay
,
G.
Duxbury
, and
N.
Langford
, “
Measurements of the time dependence of collisional relaxation processes of nitrous oxide and carbon dioxide by frequency down-chirped quantum cascade laser spectroscopy
,”
J. Chem. Phys.
(submitted).
41.
H.
Aroui
,
M.
Broquier
,
A.
Picard-Bersellini
,
J. P.
Bouanich
,
M.
Chevalier
, and
S.
Gherissi
,
J. Quant. Spectrosc. Radiat. Transf.
60
,
1011
(
1998
).
You do not currently have access to this content.