The unique importance of the cyclopropenylidene molecule conveys significance to its low-lying isomers. Eleven low-lying electronic triplet stationary points as well as the two lowest singlet structures of C3H2 have been systematically investigated. This research used coupled cluster (CC) methods with single and double excitations and perturbative triple excitations [CCSD(T)] and Dunning’s correlation-consistent polarized valence cc-pVXZ (where X=D, T, and Q) basis sets. Geometries, dipole moments, vibrational frequencies, and associated infrared intensities of the targeted molecules have been predicted. The electronic ground state of cyclopropenylidene (3S, the global minimum) is the X̃A11 state with C2v point group symmetry. Among the 11 triplet stationary points, 7 structures are found to be minima, 2 structures to be transition states, and 2 structures to be higher-order saddle points. For the six lowest-lying triplet structures and singlet propadienylidene (2S), relative energies (zero-point vibrational energy corrected values in parentheses) with respect to the global minimum [ X̃A11 (3S)] at the cc-pVQZ-UCCSD(T) level of theory are predicted to be propynylidene B3(1aT)15.5(11.3)<propadienylidene[A11(2S)]14.2(13.3)<propadienylidene[B31(2T)]45.0(43.8)<cyclopropenylidene[A3(3aT)]53.8(52.5)<cyclopropyne[B32(4aT)]70.0(70.6)<cyclopropenylidene [B31(3cT)]71.2(69.9)<trans-propenediylidene [A3(5T)]73.6(70.7) kcalmol1. The combined energy for the [C(P3)+C2H2(X̃Σ1g+)] system with respect to the global minimum (3S) is determined to be 107.4(103.8)kcalmol1. Therefore, these six triplet equilibrium structures are all energetically well below the dissociation limit to [C(P3)+C2H2(X̃Σ1g+)].

1.
G.
Herzberg
,
Proc. R. Soc. London, Ser. A
262
,
291
(
1961
).
2.
S. V.
O’Neil
,
H. F.
Schaefer
, and
C. F.
Bender
,
J. Chem. Phys.
55
,
162
(
1971
).
3.
P.
Thaddeus
,
J. M.
Vrtilek
, and
C. A.
Gottlieb
,
Astrophys. J.
299
,
L63
(
1985
).
4.
J.
Takahashi
and
K.
Yamashita
,
J. Chem. Phys.
104
,
6613
(
1996
).
5.
R. I.
Kaiser
,
C.
Ochsenfeld
,
M.
Head-Gordon
,
Y. T.
Lee
, and
A. G.
Suits
,
J. Chem. Phys.
106
,
1729
(
1997
).
6.
A. M.
Mebel
,
V. V.
Kislov
, and
M.
Hayashi
,
J. Chem. Phys.
126
,
204310
(
2007
).
7.
X.
Gu
,
Y.
Guo
,
F.
Zhang
, and
R. I.
Kaiser
,
J. Phys. Chem. A
111
,
2980
(
2007
).
8.
F.
Leonori
,
R.
Petrucci
,
E.
Segoloni
,
A.
Bergeat
,
K. M.
Hickson
,
N.
Balucani
, and
P.
Casavecchia
,
J. Phys. Chem. A
112
,
1363
(
2008
).
9.
D. J.
DeFrees
and
A. D.
McLean
,
Astrophys. J.
308
,
L31
(
1986
).
10.
J. M.
Vrtilek
,
C. A.
Gottlieb
, and
P.
Thaddeus
,
Astrophys. J.
314
,
716
(
1987
).
11.
H.
Kanata
,
S.
Yamamoto
, and
S.
Saito
,
Chem. Phys. Lett.
140
,
221
(
1987
).
12.
M.
Bogey
,
C.
Demuynck
,
J. L.
Destombes
, and
H.
Dubus
,
J. Mol. Spectrosc.
122
,
313
(
1987
).
13.
J. W.
Huang
and
W. R. M.
Graham
,
J. Chem. Phys.
93
,
1583
(
1990
).
14.
C. A.
Gottlieb
,
T. C.
Killian
,
P.
Thaddeus
,
P.
Botschwina
,
J.
Flügge
, and
M.
Oswald
,
J. Chem. Phys.
98
,
4478
(
1993
).
15.
R. A.
Seburg
,
E. V.
Patterson
,
J. F.
Stanton
, and
R. J.
McMahon
,
J. Am. Chem. Soc.
119
,
5847
(
1997
).
16.
C. A.
Taatjes
,
S. J.
Klippenstein
,
N.
Hansen
,
J. A.
Miller
,
T. A.
Cool
,
J.
Wang
,
M. E.
Law
, and
P. R.
Westmoreland
,
Phys. Chem. Chem. Phys.
7
,
806
(
2005
).
17.
E.
Achkasova
,
M.
Araki
,
A.
Denisov
, and
J. P.
Maier
,
J. Mol. Spectrosc.
237
,
70
(
2006
).
18.
V.
Lavallo
,
Y.
Canac
,
B.
Donnadieu
,
W. W.
Schoeller
, and
G.
Bertrand
,
Science
312
,
722
(
2006
).
19.
W. J.
Hehre
,
J. A.
Pople
,
W. A.
Lathan
,
L.
Radom
,
E.
Wasserman
, and
Z. R.
Wasserman
,
J. Am. Chem. Soc.
98
,
4378
(
1976
).
20.
R.
Shepard
,
A.
Banerjee
, and
J.
Simons
,
J. Am. Chem. Soc.
101
,
6174
(
1979
).
21.
T. J.
Lee
,
A.
Bunge
, and
H. F.
Schaefer
,
J. Am. Chem. Soc.
107
,
137
(
1985
).
22.
G.
Maier
,
H. P.
Reisenauer
,
W.
Schwab
,
P.
Carsky
,
B. A.
Hess
, and
L. J.
Schaad
,
J. Am. Chem. Soc.
109
,
5183
(
1987
).
23.
D. E.
Woon
,
Chem. Phys. Lett.
244
,
45
(
1995
).
24.
C. D.
Sherrill
,
C. G.
Brandow
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Am. Chem. Soc.
118
,
7158
(
1996
).
25.
C.
Ochsenfeld
,
R. I.
Kaiser
,
Y. T.
Lee
,
A. G.
Suits
, and
M.
Head-Gordon
,
J. Chem. Phys.
106
,
4141
(
1997
).
26.
C. E.
Dateo
and
T. J.
Lee
,
Spectrochim. Acta, Part A
53
,
1065
(
1997
).
27.
M.
Rubio
,
J.
Stålring
,
A.
Bernhardsson
,
R.
Lindh
, and
B. O.
Roos
,
Theor. Chem. Acc.
105
,
15
(
2000
).
28.
P.
Thaddeus
,
M. C.
McCarthy
,
M. J.
Travers
,
C. A.
Gottlieb
, and
W.
Chen
,
Faraday Discuss.
109
,
121
(
1998
).
29.
E.
Herbst
,
Chem. Soc. Rev.
30
,
168
(
2001
).
30.
R. I.
Kaiser
,
Chem. Rev.
102
,
1309
(
2002
).
31.
P. S.
Skell
and
J.
Klebe
,
J. Am. Chem. Soc.
82
,
247
(
1960
).
32.
R. A.
Bernheim
,
R. J.
Kempf
,
J. V.
Gramas
, and
P. S.
Skell
,
J. Chem. Phys.
43
,
196
(
1965
).
33.
F. K.
Chi
and
G. E.
Leroi
,
Spectrochim. Acta, Part A
31
,
1759
(
1975
).
34.
M. E.
Jacox
and
D. E.
Milligan
,
Chem. Phys.
4
,
45
(
1974
).
35.
G.
Maier
,
H. P.
Reisenauer
,
W.
Schwab
,
P.
Carsky
,
V.
Spirko
,
B. A.
Hess
, and
L. J.
Schaad
,
J. Chem. Phys.
91
,
4763
(
1989
).
36.
D. L.
Cooper
and
S. C.
Murphy
,
Astrophys. J.
333
,
482
(
1988
).
37.
V.
Jonas
,
M.
Böhem
, and
G.
Frenking
,
J. Phys. Chem.
96
,
1640
(
1992
).
38.
C. E.
Dykstra
,
C. A.
Parsons
, and
C. L.
Oates
,
J. Am. Chem. Soc.
101
,
1962
(
1979
).
39.
R. A.
Seburg
,
J. T.
DePinto
,
E. V.
Patterson
, and
R. J.
McMahon
,
J. Am. Chem. Soc.
117
,
835
(
1995
).
40.
R.
Herges
and
A.
Mebel
,
J. Am. Chem. Soc.
116
,
8229
(
1994
).
41.
J.
Cernicharo
,
C. A.
Gottlieb
,
M.
Guélin
,
T. C.
Killian
,
G.
Paubert
,
P.
Thaddeus
, and
J. M.
Vrtilek
,
Astrophys. J.
368
,
L39
(
1991
).
42.
R. A.
Seburg
and
R. J.
McMahon
,
Angew. Chem.
107
,
2198
(
1995
);
R. A.
Seburg
and
R. J.
McMahon
,
Angew. Chem., Int. Ed. Engl.
34
,
2009
(
1995
).
43.
J. F.
Stanton
,
T. D.
Jeffrey
,
A. S.
Randal
,
A. H.
Jonathan
, and
J. M.
Robert
,
J. Am. Chem. Soc.
119
,
429
(
1997
).
44.
T.
MacAllister
and
A. J. C.
Nicholson
,
J. Chem. Soc., Faraday Trans.
77
,
821
(
1981
).
45.
H. P.
Reisenauer
,
G.
Maier
,
A.
Riemann
, and
R. W.
Hoffmann
,
Angew. Chem., Int. Ed. Engl.
23
,
641
(
1984
).
46.
C. F.
Kang
, Ph.D. dissertation,
Michigan State University
,
1972
.
47.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
48.
M.
Rittby
and
R. J.
Bartlett
,
J. Phys. Chem.
92
,
3033
(
1988
).
49.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
50.
G. E.
Scuseria
,
Chem. Phys. Lett.
176
,
27
(
1991
).
51.
P.
Saxe
and
H. F.
Schaefer
,
J. Am. Chem. Soc.
102
,
3239
(
1980
).
52.
R. I.
Kaiser
,
C.
Ochsenfeld
,
M.
Head-Gordon
,
Y. T.
Lee
, and
A. G.
Suits
,
Science
274
,
1508
(
1996
).
53.
L.
Vereecken
,
K.
Pierloot
, and
J.
Peeters
,
J. Chem. Phys.
108
,
1068
(
1998
).
54.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
55.
P. E. M.
Siegbahn
,
A.
Heiberg
,
B. O.
Roos
, and
B.
Levy
,
Phys. Scr.
21
,
323
(
1980
).
56.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Siegbahn
,
Chem. Phys.
48
,
157
(
1980
).
57.
B. O.
Roos
,
Int. J. Quantum Chem.
14
,
175
(
1980
).
58.
P.
Pulay
,
Mol. Phys.
17
,
197
(
1969
).
59.
P.
Pulay
, in
Modern Theoretical Chemistry
, edited by
H. F.
Schaefer
(
Plenum
,
New York
,
1977
), Vol.
4
, pp.
153
185
.
60.
Y.
Yamaguchi
,
Y.
Osamura
,
J. D.
Goddard
, and
H. F.
Schaefer
,
A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory
(
Oxford University Press
,
New York
,
1994
).
61.
J.
Gauss
and
J. F.
Stanton
,
Chem. Phys. Lett.
276
,
70
(
1997
).
62.
P.
Szalay
,
J.
Gauss
, and
J. F.
Stanton
,
Theor. Chem. Acc.
100
,
5
(
1998
).
63.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
,
W. J.
Lauderdale
, and
R. J.
Bartlett
,
Int. J. Quantum Chem.
S26
,
879
(
1992
).
64.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
,
P. G.
Szalay
,
R. J.
Bartlett
, with contributions from
A. A.
Auer
,
D. E.
Bernholdt
,
O.
Christiansen
,
M. E.
Harding
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
D.
Jonsson
,
J.
Jusélius
,
W. J.
Lauderdale
,
T.
Metzroth
,
C.
Michauk
,
D. P.
O’Neill
,
D. R.
Price
,
K.
Ruud
,
F.
Schiffmann
,
A.
Tajti
,
M. E.
Varner
, and
J.
Vázquez
,
ACES II
, and the integral packages by
J.
Almlöf
and
P. R.
Taylor
, MOLECULE,
P. R.
Taylor
, PROPS, and
T.
Helgaker
,
H. J.
Aa.Jensen
,
P.
Jørgensen
, and
J.
Olsen
, ABACUS. For current version, see http://www.aces2.de.
65.
H. J.
Werner
and
P. J.
Knowles
, MOLPRO, version
2002
.1, a package of ab initio programs; see http://www.molpro.net.
66.
C. L.
Janssen
,
E. T.
Seidl
,
G. E.
Scuseria
,
T. P.
Hamilton
,
Y.
Yamaguchi
,
R. B.
Remington
,
Y.
Xie
,
G.
Vacek
,
C. D.
Sherrill
,
T. D.
Crawford
,
J. T.
Fermann
,
W. D.
Allen
,
B. R.
Brooks
,
G. B.
Fitzgerald
,
D. J.
Fox
,
J. F.
Gaw
,
N. C.
Handy
,
W. D.
Laidig
,
T. J.
Lee
,
R. M.
Pitzer
,
J. E.
Rice
,
P.
Saxe
,
A. C.
Scheiner
, and
H. F.
Schaefer
, PSI 2.0.8, PSITECH, Inc., Watkinsville, GA,
1994
.
67.
T. D.
Crawford
,
C. D.
Sherrill
,
E. F.
Valeev
,
J. T.
Fermann
,
R. A.
King
,
M. L.
Leininger
,
S. T.
Brown
,
C. L.
Janssen
,
E. T.
Seidl
,
J. P.
Kenny
, and
W. D.
Allen
,
J. Comput. Chem.
28
,
1610
(
2007
).
You do not currently have access to this content.