We have assessed the accuracy of a representative set of currently available approximate kinetic-energy functionals used within the frozen-density embedding scheme for the NgAuF (Ng=Ar, Kr, Xe) molecules, which we partitioned into a Ng and a AuF subsystem. Although it is weak, there is a covalent interaction between these subsystems which represents a challenge for this subsystem density functional theory approach. We analyzed the effective-embedding potentials and resulting electron density distributions and provide a quantitative analysis of the latter from dipole moment differences and root-mean-square errors in the density with respect to the supermolecular Kohn–Sham density functional theory reference calculation. Our results lead to the conclusion that none of the tested approximate kinetic-energy functionals performs well enough to describe the bond between the noble gas and gold adequately. This observation contributes to the growing evidence that the current procedure to obtain approximate kinetic-energy functionals by reparametrizing functionals obtained via the “conjointness” hypothesis of Lee, Lee, and Parr [Phys. Rev. A44, 768 (1991)] is insufficient to treat metal-ligand interactions with covalent character.

1.
F.
Maseras
and
K.
Morokuma
,
J. Comput. Chem.
16
,
1170
(
1995
).
2.
K.
Kitaura
,
Chem. Phys. Lett.
313
,
701
(
1999
).
3.
D. W.
Zhang
and
J. Z. H.
Zhang
,
J. Chem. Phys.
119
,
3599
(
2003
).
4.
R. P. A.
Bettens
and
A. M.
Lee
,
J. Phys. Chem. A
110
,
8777
(
2006
).
5.
H. M.
Senn
and
W.
Thiel
,
Angew. Chem., Int. Ed.
48
,
1198
(
2009
).
6.
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
7.
N.
Vaidehi
,
T. A.
Wesolowski
, and
A.
Warshel
,
J. Chem. Phys.
97
,
4264
(
1992
).
8.
T. A.
Wesolowski
and
A.
Warshel
,
J. Phys. Chem.
97
,
8050
(
1993
).
9.
J.
Neugebauer
,
M. J.
Louwerse
,
E. J.
Baerends
, and
T. A.
Wesolowski
,
J. Chem. Phys.
122
,
094115
(
2005
).
10.
C. R.
Jacob
,
J.
Neugebauer
,
L.
Jensen
, and
L.
Visscher
,
Phys. Chem. Chem. Phys.
8
,
2349
(
2006
).
11.
R. E.
Bulo
,
C. R.
Jacob
, and
L.
Visscher
,
J. Phys. Chem. A
112
,
2640
(
2008
).
12.
M. E.
Casida
and
T. A.
Wesolowski
,
Int. J. Quantum Chem.
96
,
577
(
2004
).
13.
J.
Neugebauer
,
J. Chem. Phys.
126
,
134116
(
2007
).
14.
M.
Zbiri
,
M.
Atanasov
,
C.
Daul
,
J. M.
Garcia-Lastra
, and
T. A.
Wesolowski
,
Chem. Phys. Lett.
397
,
441
(
2004
).
15.
J.
Neugebauer
,
C. R.
Jacob
,
T. A.
Wesolowski
, and
E. J.
Baerends
,
J. Phys. Chem. A
109
,
7805
(
2005
).
16.
J.
Neugebauer
,
J. Phys. Chem. B
112
,
2207
(
2008
).
17.
A. S. P.
Gomes
,
C. R.
Jacob
, and
L.
Visscher
,
Phys. Chem. Chem. Phys.
10
,
5353
(
2008
).
18.
M.
Dulak
and
T. A.
Wesolowski
,
Int. J. Quantum Chem.
101
,
543
(
2005
).
19.
T. A.
Wesolowski
,
Y.
Ellinger
, and
J.
Weber
,
J. Chem. Phys.
108
,
6078
(
1998
).
20.
T. A.
Wesolowski
,
J. Chem. Phys.
106
,
8516
(
1997
).
21.
A. W.
Götz
,
S. M.
Beyhan
, and
L.
Visscher
,
J. Chem. Theory Comput.
5
,
3161
(
2009
).
22.
M.
Dułak
,
J. W.
Kaminski
, and
T. A.
Wesolowski
,
J. Chem. Theory Comput.
3
,
735
(
2007
).
23.
M.
Štrajbl
,
G.
Hong
, and
A.
Warshel
,
J. Phys. Chem. B
106
,
13333
(
2002
).
24.
M.
Iannuzzi
,
B.
Kirchner
, and
J.
Hutter
,
Chem. Phys. Lett.
421
,
16
(
2006
).
25.
S. C. L.
Kamerlin
,
M.
Haranczyk
, and
A.
Warshel
,
J. Phys. Chem. A
113
,
1253
(
2009
).
26.
27.
C. R.
Jacob
and
L.
Visscher
,
J. Chem. Phys.
128
,
155102
(
2008
).
28.
T. A.
Wesolowski
, in
Computational Chemistry: Reviews of Current Trends
, edited by
J.
Leszczynski
(
World Scientific
,
Singapore
,
2006
), Vol.
10
.
29.
K.
Kiewisch
,
G.
Eickerling
,
M.
Reiher
, and
J.
Neugebauer
,
J. Chem. Phys.
128
,
044114
(
2008
).
30.
T. A.
Wesolowski
and
J.
Weber
,
Chem. Phys. Lett.
248
,
71
(
1996
).
31.
T. A.
Wesolowski
,
H.
Chermette
, and
J.
Weber
,
J. Chem. Phys.
105
,
9182
(
1996
).
32.
T. A.
Wesolowski
and
J.
Weber
,
Int. J. Quantum Chem.
61
,
303
(
1997
).
33.
C. R.
Jacob
,
T. A.
Wesolowski
, and
L.
Visscher
,
J. Chem. Phys.
123
,
174104
(
2005
).
34.
F.
Tran
,
J.
Weber
, and
T. A.
Wesolowski
,
Helv. Chim. Acta
84
,
1489
(
2001
).
35.
S.
Fux
,
K.
Kiewisch
,
C. R.
Jacob
,
J.
Neugebauer
, and
M.
Reiher
,
Chem. Phys. Lett.
461
,
353
(
2008
).
36.
C. R.
Jacob
,
S. M.
Beyhan
, and
L.
Visscher
,
J. Chem. Phys.
126
,
234116
(
2007
).
37.
J. M.
Garcia Lastra
,
J. W.
Kaminski
, and
T. A.
Wesolowski
,
J. Chem. Phys.
129
,
074107
(
2008
).
38.
H.
Lee
,
C.
Lee
, and
R. G.
Parr
,
Phys. Rev. A
44
,
768
(
1991
).
39.
V. V.
Karasiev
,
S. B.
Trickey
, and
F. E.
Harris
,
J. Comput.-Aided Mater. Des.
13
,
111
(
2006
).
40.
S. A.
Cooke
and
M. C. L.
Gerry
,
J. Am. Chem. Soc.
126
,
17000
(
2004
).
41.
L.
Belpassi
,
I.
Infante
,
F.
Tarantelli
, and
L.
Visscher
,
J. Am. Chem. Soc.
130
,
1048
(
2008
).
42.
L. H.
Thomas
,
Math. Proc. Cambridge Philos. Soc.
23
,
542
(
1927
).
43.
E.
Fermi
,
Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend.
6
,
602
(
1927
).
44.
E. H.
Lieb
,
Rev. Mod. Phys.
53
,
603
(
1981
).
45.
46.
N. L.
Balàzs
,
Phys. Rev.
156
,
42
(
1967
).
47.
E. H.
Lieb
and
B.
Simon
,
Phys. Rev. Lett.
31
,
681
(
1973
).
48.
E. H.
Lieb
and
B.
Simon
,
Adv. Math.
23
,
22
(
1977
).
49.
C. F.
von Weizsäcker
,
Z. Phys.
96
,
431
(
1935
).
50.
A.
Lembarki
and
H.
Chermette
,
Phys. Rev. A
50
,
5328
(
1994
).
51.
D. J.
Lacks
and
R. G.
Gordon
,
J. Chem. Phys.
100
,
4446
(
1994
).
52.
P.
Fuentealba
and
O.
Reyes
,
Chem. Phys. Lett.
232
,
31
(
1995
).
53.
P.
Fuentealba
,
J. Mol. Struct.
390
,
1
(
1997
).
54.
F.
Tran
and
T. A.
Wesolowski
,
Int. J. Quantum Chem.
89
,
441
(
2002
).
55.
56.
J. P.
Perdew
, in
Electronic Structure of Solids
, edited by
P.
Ziesche
and
H.
Eschrig
(
Akademie
,
Berlin
,
1991
), pp.
11
20
.
57.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
58.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
116
,
5933
(
2002
).
59.
C. R.
Jacob
,
J.
Neugebauer
, and
L.
Visscher
,
J. Comput. Chem.
29
,
1011
(
2008
).
60.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
,
J. Comput. Chem.
22
,
931
(
2001
).
61.
ADF2008.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com, accessed on May
2008
.
62.
E.
van Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
,
J. Chem. Phys.
99
,
4597
(
1993
).
63.
E.
van Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
,
J. Chem. Phys.
101
,
9783
(
1994
).
64.
C. J.
Evans
,
D. S.
Rubinoff
, and
M. C. L.
Gerry
,
Phys. Chem. Chem. Phys.
2
,
3943
(
2000
).
65.
J. M.
Thomas
,
N. R.
Walker
,
S. A.
Cooke
, and
M. C. L.
Gerry
,
J. Am. Chem. Soc.
126
,
1235
(
2004
).
66.
B. P.
Tripathi
,
R. K.
Laloraya
, and
S. L.
Srivasta
,
Phys. Rev. A
6
,
850
(
1972
).
67.
Y. A.
Bernard
,
M.
Dulak
,
J. W.
Kaminski
, and
T. A.
Wesolowski
,
J. Phys. A: Math. Theor.
41
,
055302
(
2008
).
68.
C. R.
Jacob
and
L.
Visscher
, in
Recent Advances in Orbital-Free Density Functional Theory
, edited by
Y. A.
Wang
and
T. A.
Wesolowski
(
World Scientific
,
Singapore
,
2010
).
You do not currently have access to this content.