In this study, we investigate interference between several excited electronic states in resonance enhanced vibrational Raman optical activity (RROA) spectra. A gradient Franck–Condon model for the excited-state potential energy surface is applied in order to include vibronic effects in the description of the RROA intensities. Both sum-over-states and time-dependent expressions for the RROA intensities in case of close-lying excited states are given. As an example, we compare the calculated RROA and resonance Raman spectra of (S)-(+)-naproxen-OCD3 to the experimental ones. Subsequently, we examine the excitation profiles of (S)-(+)-naproxen and study the vibration at 1611cm1 in more detail in order to demonstrate how the consideration of a second excited electronic state can lead to significant changes in the RROA intensities.

1.
L. A.
Nafie
,
Chem. Phys.
205
,
309
(
1996
).
2.
M.
Vargek
,
T. B.
Freedman
,
E.
Lee
, and
L. A.
Nafie
,
Chem. Phys. Lett.
287
,
359
(
1998
).
3.
L.
Jensen
,
J.
Autschbach
,
M.
Krykunov
, and
G. C.
Schatz
,
J. Chem. Phys.
127
,
134101
(
2007
).
4.
P.
Stein
,
V.
Miskowski
,
W. H.
Woodruff
,
J. P.
Griffin
,
K. G.
Werner
,
B. P.
Gaber
, and
T. G.
Spiro
,
J. Chem. Phys.
64
,
2159
(
1976
).
5.
K. -S. K.
Shin
and
J. I.
Zink
,
J. Am. Chem. Soc.
112
,
7148
(
1990
).
6.
J. L.
Wootton
and
J. I.
Zink
,
J. Am. Chem. Soc.
119
,
1895
(
1997
).
7.
M.
Wu
,
M.
Ray
, and
A. J.
Sedlacek
,
J. Chem. Phys.
109
,
1352
(
1998
).
8.
S. E.
Bailey
,
J. S.
Cohan
, and
J. I.
Zink
,
J. Phys. Chem. B
104
,
10743
(
2000
).
9.
J. V.
Lockard
,
G.
Valverde
,
D.
Neuhauser
, and
J. I.
Zink
,
J. Phys. Chem. A
110
,
57
(
2006
).
10.
J.
Neugebauer
,
E. J.
Baerends
,
E. V.
Efremov
,
F.
Ariese
, and
C.
Gooijer
,
J. Phys. Chem. A
109
,
2100
(
2005
).
11.
T.
Petrenko
,
K.
Ray
,
K. E.
Wieghardt
, and
F.
Neese
,
J. Am. Chem. Soc.
128
,
4422
(
2006
).
12.
C.
Herrmann
,
J.
Neugebauer
,
M.
Presselt
,
U.
Uhlemann
,
M.
Schmitt
,
S.
Rau
,
J.
Popp
, and
M.
Reiher
,
J. Phys. Chem. B
111
,
6078
(
2007
).
13.
F.
Neese
,
Mol. Phys.
105
,
2507
(
2007
).
14.
T.
Petrenko
and
F.
Neese
,
J. Chem. Phys.
127
,
164319
(
2007
).
15.
S.
Laimgruber
,
T.
Schmierer
,
P.
Gilch
,
K.
Kiewisch
, and
J.
Neugebauer
,
Phys. Chem. Chem. Phys.
10
,
3872
(
2008
).
16.
K.
Kiewisch
,
J.
Neugebauer
, and
M.
Reiher
,
J. Chem. Phys.
129
,
204103
(
2008
).
17.
A.
Mohammed
,
H.
Ågren
, and
P.
Norman
,
Phys. Chem. Chem. Phys.
11
,
4539
(
2009
).
18.
A.
Mohammed
,
H.
Ågren
, and
P.
Norman
,
Chem. Phys. Lett.
468
,
119
(
2009
).
19.
F.
Lahmani
,
K. L.
Barbu-Debus
,
N.
Seurre
, and
A.
Zehnacker-Rentien
,
Chem. Phys. Lett.
375
,
636
(
2003
).
20.
L. A.
Nafie
,
Theor. Chem. Acc.
119
,
39
(
2008
).
21.
L. A.
Nafie
and
D.
Che
, in
Modern Nonlinear Optics Part 3
,
Advances in Chemical Physics
Vol.
85
, edited by
M.
Evans
and
S.
Kielich
(
Wiley
,
New York
,
1993
).
22.
A.
Hazra
and
M.
Nooijen
,
Int. J. Quantum Chem.
95
,
643
(
2003
).
23.
A.
Hazra
,
H. H.
Chang
, and
M.
Nooijen
,
J. Chem. Phys.
121
,
2125
(
2004
).
24.
J.
Neugebauer
and
B. A.
Hess
,
J. Chem. Phys.
120
,
11564
(
2004
).
25.
W. L.
Peticolas
and
T.
Rush
 III
,
J. Comput. Chem.
16
,
1261
(
1995
).
26.
A. B.
Myers
and
R. A.
Mathies
, in
Biological Applications of Raman Spectroscopy
,
Resonance Raman Spectra of Polyenes and Aromatics
Vol.
2
, edited by
T. G.
Spiro
(
Wiley
,
New York
,
1979
), pp.
123
166
.
27.
L. D.
Barron
,
Molecular Light Scattering and Optical Activity
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2004
).
28.
D. A.
Long
,
The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules
(
Wiley
,
New York
,
2002
).
29.
D. J.
Tannor
,
J. Chem. Phys.
77
,
202
(
1982
).
30.
A.
Myers
,
R. A.
Mathies
,
D. J.
Tannor
, and
E. J.
Heller
,
J. Chem. Phys.
77
,
3857
(
1982
).
32.
S. -Y.
Lee
and
E. J.
Heller
,
J. Chem. Phys.
71
,
4777
(
1979
).
33.
E. J.
Heller
,
Acc. Chem. Res.
14
,
368
(
1981
).
34.
M.
Lilichenko
,
D.
Tittelbach-Helmrich
,
J. W.
Verhoeven
,
I. R.
Gould
, and
A. B.
Myers
,
J. Chem. Phys.
109
,
10958
(
1998
).
35.
A.
Myers Kelley
,
Int. J. Quantum Chem.
104
,
602
(
2005
).
36.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
37.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
38.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
39.
T. W.
Patapoff
,
P. -Y.
Turpin
, and
W. L.
Peticolas
,
J. Phys. Chem.
90
,
2347
(
1986
).
40.
D. C.
Blazej
and
W. L.
Peticolas
,
J. Chem. Phys.
72
,
3134
(
1980
).
41.
S.
Hassing
and
O. S.
Mortensen
,
J. Chem. Phys.
73
,
1078
(
1980
).
42.
L.
Chinsky
,
A.
Laigle
,
W. L.
Peticolas
, and
P. -Y.
Turpin
,
J. Chem. Phys.
76
,
1
(
1982
).
43.
J.
Neugebauer
,
C.
Herrmann
,
S.
Luber
, and
M.
Reiher
, SNF 4.0, a program for the quantum chemical calculation of vibrational spectra, see http://www.reiher.ethz.ch/software/snf.
44.
J.
Neugebauer
,
M.
Reiher
,
C.
Kind
, and
B. A.
Hess
,
J. Comput. Chem.
23
,
895
(
2002
).
45.
J.
Neugebauer
, DNR 1.1.0, a program for resonance Raman and vibronic structure calculations.
46.
S.
Luber
and
M.
Reiher
,
Chem. Phys.
346
,
212
(
2008
).
47.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
48.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
49.
Amsterdam Density Functional Program; Theoretical Chemistry, Vrije Universiteit, Amsterdam, http://www.scm.com.
50.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T. J.
Ziegler
,
J. Comput. Chem.
22
,
931
(
2001
).
51.
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
E. J.
Baerends
,
Comput. Phys. Commun.
118
,
119
(
1999
).
52.
P. R. T.
Schipper
,
O. V.
Gritsenko
,
S. J. A.
van Gisbergen
, and
E. J.
Baerends
,
J. Chem. Phys.
112
,
1344
(
2000
).
53.
O. V.
Gritsenko
,
P. R. T.
Schipper
, and
E. J.
Baerends
,
Chem. Phys. Lett.
302
,
199
(
1999
).
54.
O. V.
Gritsenko
,
P. R. T.
Schipper
, and
E. J.
Baerends
,
Int. J. Quantum Chem.
76
,
407
(
2000
).
55.
M.
Parac
and
S.
Grimme
,
Chem. Phys.
292
,
11
(
2003
).
56.
A.
Köhn
and
C.
Hättig
,
J. Chem. Phys.
119
,
5021
(
2003
).
57.
T.
Helgaker
,
K.
Ruud
,
K. L.
Bak
,
P.
Jørgensen
, and
J.
Olsen
,
Faraday Discuss.
99
,
165
(
1994
).
58.
K.
Ruud
,
T.
Helgaker
, and
P.
Bouř
,
J. Phys. Chem. A
106
,
7448
(
2002
).
59.
M.
Pecul
and
K.
Ruud
,
Int. J. Quantum Chem.
104
,
816
(
2005
).
60.
V.
Liégeois
,
O.
Quinet
, and
B.
Champagne
,
J. Chem. Phys.
122
,
214304
(
2005
).
61.
V.
Liégeois
,
O.
Quinet
,
B.
Champagne
,
J.
Haesler
,
G.
Zuber
, and
W.
Hug
,
Vib. Spectrosc.
42
,
309
(
2006
).
62.
V.
Liégeois
,
O.
Quinet
, and
B.
Champagne
,
Int. J. Quantum Chem.
106
,
3097
(
2006
).
63.
M.
Reiher
,
V.
Liégeois
, and
K.
Ruud
,
J. Phys. Chem. A
109
,
7567
(
2005
).
64.
M.
Pecul
,
E.
Lamparska
,
C.
Cappelli
,
L.
Frediani
, and
K.
Ruud
,
J. Phys. Chem. A
110
,
2807
(
2006
).
65.
J.
Kapitán
,
V.
Baumruk
, and
P.
Bouř
,
J. Am. Chem. Soc.
128
,
2438
(
2006
).
66.
C.
Herrmann
,
K.
Ruud
, and
M.
Reiher
,
ChemPhysChem
7
,
2189
(
2006
).
67.
V.
Liégeois
,
K.
Ruud
, and
B.
Champagne
,
J. Chem. Phys.
127
,
204105
(
2007
).
68.
C.
Herrmann
,
K.
Ruud
, and
M.
Reiher
,
Chem. Phys.
343
,
200
(
2008
).
69.
J.
Kapitán
,
F.
Zhu
,
L.
Hecht
,
J.
Gardiner
,
D.
Seebach
, and
L. D.
Barron
,
Angew. Chem., Int. Ed.
47
,
6392
(
2008
).
70.
J.
Kapitán
,
F.
Zhu
,
L.
Hecht
,
J.
Gardiner
,
D.
Seebach
, and
L. D.
Barron
,
Angew. Chem.
120
,
6492
(
2008
).
71.
S.
Luber
,
C.
Herrmann
, and
M.
Reiher
,
J. Phys. Chem. B
112
,
2218
(
2008
).
72.
C. R.
Jacob
,
S.
Luber
, and
M.
Reiher
,
ChemPhysChem
9
,
2177
(
2008
).
73.
C. R.
Jacob
,
S.
Luber
, and
M.
Reiher
,
Chem.-Eur. J.
15
,
13491
(
2009
).
74.
J.
Neugebauer
,
E. J.
Baerends
, and
M.
Nooijen
,
J. Phys. Chem. A
109
,
1168
(
2005
).
75.
J.
Neugebauer
,
E. J.
Baerends
,
M.
Nooijen
, and
J.
Autschbach
,
J. Chem. Phys.
122
,
234305
(
2005
).
You do not currently have access to this content.