The influence of different types of attractive pair-potentials in density functional models of homogeneous nucleation is analyzed. The models considered here are based on the local-density approximation of the free-energy functional and make use of the same hard-sphere reference fluid (the Carnahan–Starling approximation). The analyzed magnitude is the ratio between the obtained density functional theory nucleation barrier height and the corresponding classical result. Some recent studies suggest that such an energy ratio follows a universal scaling relation which is independent of the form of the pair-potential. The present analysis confirms that the results are weakly dependent on the form of the interaction potential, provided that its asymptotic decay is strong enough as for those that are usually considered in practice: Yukawa, Lennard-Jones, Square-Well, etc. However, when the asymptotic decay at infinity of the attractive pair-potential is weak enough, the conjectured scaling behavior ceases to be applicable and the nucleation barrier ratio can be reduced significantly.

1.
J.
Frenkel
,
Kinetic Theory of Liquids
(
Dover
,
New York
,
1955
).
2.
F. F.
Abraham
,
Homogeneous Nucleation Theory
(
Academic
,
New York
,
1974
).
3.
M.
Blander
and
J. L.
Katz
,
AIChE J.
21
,
833
(
1975
).
4.
D. W.
Oxtoby
,
J. Phys.: Condens. Matter
4
,
7627
(
1992
).
5.
J. D.
Gunton
,
J. Stat. Phys.
95
,
903
(
1999
).
6.
V. G.
Baidakov
,
G. S.
Boltashev
, and
J. W. P.
Schmelzer
,
J. Colloid Interface Sci.
231
,
312
(
2000
).
7.
E.
Elias
and
P. L.
Chambr’e
,
ASME J. Heat Transfer
115
,
231
(
1993
).
8.
J. W. P.
Schmelzer
and
J.
Schmelzer
, Jr.
,
J. Colloid Interface Sci.
215
,
345
(
1999
).
9.
J. W.
Cahn
and
J. E.
Hilliard
,
J. Chem. Phys.
28
,
258
(
1958
).
10.
D. W.
Oxtoby
and
R.
Evans
,
J. Chem. Phys.
89
,
7521
(
1988
).
11.
J. S.
Rowlinson
and
B.
Widom
,
Molecular Theory of Capillarity
(
Clarendon
,
Oxford
,
1984
).
12.
D. E.
Sullivan
,
J. Chem. Phys.
74
,
2604
(
1981
).
13.
J. -S.
Li
and
G.
Wilemski
,
J. Chem. Phys.
118
,
2845
(
2003
).
14.
J. C.
Barrett
,
J. Phys.: Condens. Matter
9
,
L19
(
1997
).
15.
M.
Iwamatsu
and
K.
Horii
,
Aerosol Sci. Technol.
27
,
563
(
1997
).
16.
R.
McGraw
and
A.
Laaksonen
,
Phys. Rev. Lett.
76
,
2754
(
1996
).
17.
V.
Talanquer
,
J. Chem. Phys.
106
,
9957
(
1997
).
18.
K.
Koga
and
X. C.
Zeng
,
J. Chem. Phys.
110
,
3466
(
1999
).
19.
I.
Kusaka
,
J. Chem. Phys.
118
,
5510
(
2003
).
20.
M.
Iwamatsu
,
J. Chem. Phys.
129
,
104508
(
2008
).
21.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
22.
X. C.
Zeng
and
D. W.
Oxtoby
,
J. Chem. Phys.
94
,
4472
(
1991
).
23.
V.
Talanquer
and
D. W.
Oxtoby
,
J. Chem. Phys.
100
,
5190
(
1994
).
24.
R. M.
Nyquist
,
V.
Talanquer
, and
D. W.
Oxtoby
,
J. Chem. Phys.
103
,
1175
(
1995
).
25.
B. Q.
Lu
,
R.
Evans
, and
M. M.
Telo da Gama
,
Mol. Phys.
55
,
1319
(
1985
).
26.
J.
Barrett
,
J. Chem. Phys.
111
,
5938
(
1999
).
27.
M.
Alamgir
and
J. H.
Lienhard
ASME J. Heat Transfer
103
,
52
(
1981
).
28.
P.
Deligiannis
and
J. W.
Cleaver
,
Int. J. Multiphase Flow
18
,
273
(
1992
).
29.
V. K.
Shen
and
P. G.
Debenedetti
,
J. Chem. Phys.
114
,
4149
(
2001
).
30.
J.
Barrett
,
J. Chem. Phys.
131
,
084711
(
2009
).
31.
P.
Tarazona
and
R.
Evans
,
Mol. Phys.
48
,
799
(
1983
).
32.
W.
Press
,
B.
Flannery
,
S.
Teukolsky
, and
W.
Vetterling
,
Numerical Recipes in Fortran: The Art of Scientific Computing
(
Cambridge University Press
,
Cambridge
,
1986
).
You do not currently have access to this content.