Water clusters are known to undergo an autoprotonation reaction upon ionization by photons or electron impact, resulting in the formation of (H2O)nH3O+. Ejection of OH cannot be quenched by near-threshold ionization; it is only partly quenched when clusters are complexed with inert gas atoms. Mass spectra recorded by electron ionization of water-doped helium droplets show that the helium matrix also fails to quench OH loss. The situation changes drastically when helium droplets are codoped with C60. Charged C60-water complexes are predominantly unprotonated; C60(H2O)4+ and (C60)2(H2O)4+ appear with enhanced abundance. Another intense ion series is due to C60(H2O)nOH+; dehydrogenation is proposed to be initiated by charge transfer between the primary He+ ion and C60. The resulting electronically excited C60+ leads to the formation of a doubly charged C60-water complex either via emission of an Auger electron from C60+, or internal Penning ionization of the attached water complex, followed by charge separation within {C60(H2O)n}2+. This mechanism would also explain previous observations of dehydrogenation reactions in doped helium droplets. Mass-analyzed ion kinetic energy scans reveal spontaneous (unimolecular) dissociation of C60(H2O)n+. In addition to the loss of single water molecules, a prominent reaction channel yields bare C60+ for sizes n=3, 4, or 6. Ab initio Hartree–Fock calculations for C60-water complexes reveal negligible charge transfer within neutral complexes. Cationic complexes are well described as water clusters weakly bound to C60+. For n=3, 4, or 6, fissionlike desorption of the entire water complex from C60(H2O)n+ energetically competes with the evaporation of a single water molecule.

1.
G.
Niedner-Schatteburg
and
V. E.
Bondybey
,
Chem. Rev. (Washington, D.C.)
100
,
4059
(
2000
).
2.
J. J.
Gilligan
and
A. W.
Castleman
,Jr.
,
J. Phys. Chem. A
105
,
5601
(
2001
);
F. N.
Keutsch
and
R. J.
Saykally
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
10533
(
2001
);
[PubMed]
J.
Stähler
,
M.
Mehlhorn
,
U.
Bovensiepen
,
M.
Meyer
,
D. O.
Kusmierek
,
K.
Morgenstern
, and
M.
Wolf
,
Phys. Rev. Lett.
98
,
206105
(
2007
);
[PubMed]
B. J.
Duncombe
,
K.
Duale
,
A.
Buchanan-Smith
, and
A. J.
Stace
,
J. Phys. Chem. A
111
,
5158
(
2007
);
[PubMed]
S.
Müller
,
S.
Krapf
,
T.
Koslowski
,
M.
Mudrich
, and
F.
Stienkemeier
,
Phys. Rev. Lett.
102
,
183401
(
2009
);
[PubMed]
A.
Carrera
,
M.
Mobbili
, and
E.
Marceca
,
J. Phys. Chem. A
113
,
2711
(
2009
);
[PubMed]
C.
Bobbert
,
S.
Schutte
,
C.
Steinbach
, and
U.
Buck
,
Eur. Phys. J. D
19
,
183
(
2002
).
3.
M.
Miyazaki
,
A.
Fujii
,
T.
Ebata
, and
N.
Mikami
,
Science
304
,
1134
(
2004
).
4.
J. -W.
Shin
,
N. I.
Hammer
,
E. G.
Diken
,
M. A.
Johnson
,
R. S.
Walters
,
T. D.
Jaeger
,
M. A.
Duncan
,
R. A.
Christie
, and
K. D.
Jordan
,
Science
304
,
1137
(
2004
).
5.
T. S.
Zwier
,
Science
304
,
1119
(
2004
).
6.
T.
Schindler
,
C.
Berg
,
G.
Niedner-Schatteburg
, and
V.
Bondybey
,
Chem. Phys. Lett.
250
,
301
(
1996
).
7.
C. P.
Schulz
,
R.
Haugstätter
,
H. U.
Tittes
, and
I. V.
Hertel
,
Phys. Rev. Lett.
57
,
1703
(
1986
);
[PubMed]
I. V.
Hertel
,
C.
Hüglin
,
C.
Nitsch
, and
C. P.
Schulz
,
Phys. Rev. Lett.
67
,
1767
(
1991
).
[PubMed]
8.
A. J.
Stace
and
C.
Moore
,
Chem. Phys. Lett.
96
,
80
(
1983
).
9.
O.
Echt
,
D.
Kreisle
,
M.
Knapp
, and
E.
Recknagel
,
Chem. Phys. Lett.
108
,
401
(
1984
).
10.
Z.
Shi
,
J. V.
Ford
,
S.
Wei
, and
A. W.
Castleman
, Jr.
,
J. Chem. Phys.
99
,
8009
(
1993
).
11.
R. T.
Jongma
,
Y.
Huang
,
S.
Shi
, and
A. M.
Wodtke
,
J. Phys. Chem. A
102
,
8847
(
1998
).
12.
P. P.
Radi
,
P.
Beaud
,
D.
Franzke
,
H. M.
Frey
,
T.
Gerber
,
B.
Mischler
, and
A. P.
Tzannis
,
J. Chem. Phys.
111
,
512
(
1999
).
13.
F.
Dong
,
S.
Heinbuch
,
J. J.
Rocca
, and
E. R.
Bernstein
,
J. Chem. Phys.
124
,
224319
(
2006
).
14.
L.
Belau
,
K. R.
Wilson
,
S. R.
Leone
, and
M.
Ahmed
,
J. Phys. Chem. A
111
,
10075
(
2007
);
[PubMed]
L.
Belau
,
K. R.
Wilson
,
S. R.
Leone
, and
M.
Ahmed
,
J. Phys. Chem. A
111
,
10885
(
2007
).
15.
C. Y.
Ng
,
D. J.
Trevor
,
P. W.
Tiedemann
,
S. T.
Ceyer
,
P. L.
Kronebusch
,
B. H.
Mahan
, and
Y. T.
Lee
,
J. Chem. Phys.
67
,
4235
(
1977
).
16.
K.
Norwood
,
A.
Ali
, and
C. Y.
Ng
,
J. Chem. Phys.
95
,
8029
(
1991
).
17.
Klots and Compton have reported unprotonated dimers and a very weak (1%) signal of unprotonated trimers formed by electron ionization at 15 eV (Ref. 18).
18.
C. E.
Klots
and
R. N.
Compton
,
J. Chem. Phys.
69
,
1644
(
1978
).
19.
R. N.
Barnett
and
U.
Landman
,
J. Phys. Chem.
99
,
17305
(
1995
).
20.
H.
Tachikawa
,
J. Phys. Chem. A
106
,
6915
(
2002
).
21.
P. M. W.
Gill
and
L.
Radom
,
J. Am. Chem. Soc.
110
,
4931
(
1988
);
M.
Sodupe
,
J.
Bertran
,
L.
Rodríguez-Santiago
, and
E. J.
Baerends
,
J. Phys. Chem. A
103
,
166
(
1999
).
22.
According to DF calculations, the hydrazinelike {H2OOH2}+ configuration of the dimer ion is more tightly bound than the (H3O+)OH structure (Ref. 19). However, post-HF calculations at the level of second-order and fourth-order Møller–Plesset perturbation theory suggest that the local density approximation strongly overestimates the binding energy in the hemibond (hydrazine) structure (Ref. 21).
23.
A.
Furuhama
,
M.
Dupuis
, and
K.
Hirao
,
J. Chem. Phys.
124
,
164310
(
2006
).
24.
R. N.
Barnett
and
U.
Landman
,
J. Phys. Chem. A
101
,
164
(
1997
).
25.
H.
Tachikawa
,
J. Phys. Chem. A
108
,
7853
(
2004
).
26.
T.
James
,
D. J.
Wales
, and
J.
Hernandez-Rojas
,
Chem. Phys. Lett.
415
,
302
(
2005
).
27.
Y. V.
Novakovskaya
,
Int. J. Quantum Chem.
107
,
2763
(
2007
).
28.
P.
Ayotte
,
G. H.
Weddle
,
C. G.
Bailey
,
M. A.
Johnson
,
F.
Vila
, and
K. D.
Jordan
,
J. Chem. Phys.
110
,
6268
(
1999
);
J. -C.
Jiang
,
Y. -S.
Wang
,
H. -C.
Chang
,
S. H.
Lin
,
Y. T.
Lee
,
G.
Niedner-Schatteburg
, and
H. -C.
Chang
,
J. Am. Chem. Soc.
122
,
1398
(
2000
).
29.
Y. V.
Novakovskaya
and
N. F.
Stepanov
,
J. Phys. Chem. A
103
,
10975
(
1999
).
30.
H.
Shinohara
,
N.
Nishi
, and
N.
Washida
,
J. Chem. Phys.
84
,
5561
(
1986
).
31.
H.
Shiromaru
,
H.
Shinohara
,
N.
Washida
,
H. -S.
Yoo
, and
K.
Kimura
,
Chem. Phys. Lett.
141
,
7
(
1987
);
L.
Angel
and
A. J.
Stace
,
Chem. Phys. Lett.
345
,
277
(
2001
);
S.
Heinbuch
,
F.
Dong
,
J. J.
Rocca
, and
E. R.
Bernstein
,
J. Chem. Phys.
125
,
154316
(
2006
).
[PubMed]
32.
R.
Fröchtenicht
,
M.
Kaloudis
,
M.
Koch
, and
F.
Huisken
,
J. Chem. Phys.
105
,
6128
(
1996
).
33.
M.
Lewerenz
,
B.
Schilling
, and
J. P.
Toennies
,
J. Chem. Phys.
102
,
8191
(
1995
).
34.
S.
Yang
,
S. M.
Brereton
,
S.
Nandhra
,
A. M.
Ellis
,
B.
Shang
,
L. -F.
Yuan
, and
J.
Yang
,
J. Chem. Phys.
127
,
134303
(
2007
).
35.
H.
Haberland
and
H.
Langosch
,
Z. Phys. D: At., Mol. Clusters
2
,
243
(
1986
);
S.
Yamaguchi
,
S.
Kudoh
,
Y.
Kawai
,
T.
Orii
, and
K.
Takeuchi
,
Chem. Phys. Lett.
377
,
37
(
2003
).
36.
See Ref. 6 and references therein for related studies of metal ions solvated in water clusters, M+(H2O)n.
37.
R. N.
Barnett
and
U.
Landman
,
Phys. Rev. Lett.
70
,
1775
(
1993
).
38.
S.
Denifl
,
F.
Zappa
,
I.
Mähr
,
F.
Ferreira da Silva
,
A.
Aleem
,
A.
Mauracher
,
M.
Probst
,
J.
Urban
,
P.
Mach
,
A.
Bacher
,
O.
Echt
,
T. D.
Märk
, and
P.
Scheier
,
Angew. Chem., Int. Ed.
48
,
8940
(
2009
).
39.
K.
Głuch
,
S.
Matt-Leubner
,
L.
Michalak
,
O.
Echt
,
A.
Stamatovic
,
P.
Scheier
, and
T. D.
Märk
,
J. Chem. Phys.
120
,
2686
(
2004
).
40.
S.
Denifl
,
I.
Mähr
,
F.
Ferreira da Silva
,
F.
Zappa
,
T. D.
Märk
, and
P.
Scheier
,
Eur. Phys. J. D
51
,
73
(
2009
).
41.
H.
Buchenau
,
E. L.
Knuth
,
J.
Northby
,
J. P.
Toennies
, and
C.
Winkler
,
J. Chem. Phys.
92
,
6875
(
1990
);
F.
Stienkemeier
and
K. K.
Lehmann
,
J. Phys. B
39
,
R127
(
2006
).
42.
R. G.
Cooks
,
J. H.
Beynon
,
R. M.
Caprioli
, and
G. R.
Lester
,
Metastable Ions
(
Elsevier
,
Amsterdam
,
1973
).
43.
S.
Matt
,
O.
Echt
,
R.
Wörgötter
,
V.
Grill
,
P.
Scheier
,
C.
Lifshitz
, and
T. D.
Märk
,
Chem. Phys. Lett.
264
,
149
(
1997
).
44.
R.
Fröchtenicht
,
U.
Henne
,
J. P.
Toennies
,
A.
Ding
,
M.
Fieber-Erdmann
, and
T.
Drewello
,
J. Chem. Phys.
104
,
2548
(
1996
).
45.
S.
Denifl
,
M.
Stano
,
A.
Stamatovic
,
P.
Scheier
, and
T. D.
Märk
,
J. Chem. Phys.
124
,
054320
(
2006
).
46.
J.
Seong
,
K. C.
Janda
,
N.
Halberstadt
, and
F.
Spiegelmann
,
J. Chem. Phys.
109
,
10873
(
1998
);
Y.
Ren
and
V. V.
Kresin
,
J. Chem. Phys.
128
,
074303
(
2008
);
[PubMed]
W. K.
Lewis
,
C. M.
Lindsay
, and
R. E.
Miller
,
J. Chem. Phys.
129
,
201101
(
2008
);
[PubMed]
A. M.
Ellis
and
S. F.
Yang
,
Phys. Rev. A
76
,
032714
(
2007
).
47.
T.
Ruchti
,
B. E.
Callicoatt
, and
K. C.
Janda
,
Phys. Chem. Chem. Phys.
2
,
4075
(
2000
).
48.
M.
Fárník
and
J.
Toennies
,
J. Chem. Phys.
122
,
014307
(
2005
).
49.
However, small water cluster anions containing up to ten helium atoms have been observed upon attachment of low-energy electrons to water clusters embedded in helium droplets (Ref. 50).
50.
F.
Zappa
,
S.
Denifl
,
I.
Mähr
,
A.
Bacher
,
O.
Echt
,
T. D.
Märk
, and
P.
Scheier
,
J. Am. Chem. Soc.
130
,
5573
(
2008
).
51.
K.
von Haeften
,
A. R. B.
de Castro
,
M.
Joppien
,
L.
Moussavizadeh
,
R.
von Pietrowski
, and
T.
Möller
,
Phys. Rev. Lett.
78
,
4371
(
1997
);
J. A.
Northby
,
J. Chem. Phys.
115
,
10065
(
2001
).
52.
The Thomson (Th) is defined as the quotient of mass in units of the unified atomic mass unit u1 Dalton and the charge in units of the elementary charge e, 1Th=1u/e (Ref. 53). Mass-to-charge ratios specified in Thomsons are numerically equal to the dimensionless quantity m/z.
53.
R. G.
Cooks
and
A. L.
Rockwood
,
Rapid Commun. Mass Spectrom.
5
,
93
(
1991
).
54.
J. A.
Zimmerman
,
J. R.
Eyler
,
S. B. H.
Bach
, and
S. W.
McElvany
,
J. Chem. Phys.
94
,
3556
(
1991
);
J.
de Vries
,
H.
Steger
,
B.
Kamke
,
C.
Menzel
,
B.
Weisser
,
W.
Kamke
, and
I. V.
Hertel
,
Chem. Phys. Lett.
188
,
159
(
1992
);
R. K.
Yoo
,
B.
Ruscic
, and
J.
Berkowitz
,
J. Chem. Phys.
96
,
911
(
1992
);
D. L.
Lichtenberger
,
M. E.
Jatcko
,
K. W.
Nebesny
,
C. D.
Ray
,
D. R.
Huffmann
, and
L. D.
Lamb
,
Chem. Phys. Lett.
198
,
454
(
1992
).
55.
B.
Winter
,
R.
Weber
,
W.
Widdra
,
M.
Dittmar
,
M.
Faubel
, and
I. V.
Hertel
,
J. Phys. Chem. A
108
,
2625
(
2004
);
P.
Cabral do Couto
,
S. G.
Estacio
, and
B. J.
Costa Cabral
,
J. Chem. Phys.
123
,
054510
(
2005
);
[PubMed]
J. V.
Coe
,
A. D.
Earhart
,
M. H.
Cohen
,
G. J.
Hoffman
,
H. W.
Sarkas
, and
K. H.
Bowen
,
J. Chem. Phys.
107
,
6023
(
1997
);
Y. V.
Novakovskaya
and
N. F.
Stepanov
,
J. Phys. Chem. A
103
,
3285
(
1999
).
56.
J. P.
Toennies
and
A. F.
Vilesov
,
Angew. Chem., Int. Ed.
43
,
2622
(
2004
).
57.
G.
Javahery
,
S.
Petrie
,
J. R.
Wang
,
X. M.
Wang
, and
D. K.
Bohme
,
Int. J. Mass Spectrom. Ion Process.
125
,
R13
(
1993
).
58.
H.
Steger
,
J.
deVries
,
B.
Kamke
,
W.
Kamke
, and
T.
Drewello
,
Chem. Phys. Lett.
194
,
452
(
1992
).
59.
L. S.
Cederbaum
,
J.
Zobeley
, and
F.
Tarantelli
,
Phys. Rev. Lett.
79
,
4778
(
1997
).
60.
L.
Varriale
,
N. M.
Tonge
,
N.
Bhalla
, and
A. M.
Ellis
,
J. Chem. Phys.
132
,
161101
(
2010
);
[PubMed]
M.
Mucke
,
M.
Braune
,
S.
Barth
,
M.
Förstel
,
T.
Lischke
,
V.
Ulrich
,
T.
Arion
,
U.
Becker
,
A.
Bradshaw
, and
U.
Hergenhahn
,
Nat. Phys.
6
,
143
(
2010
).
61.
G.
Javahery
,
S.
Petrie
,
H.
Wincel
,
J.
Wang
, and
D. K.
Bohme
,
J. Am. Chem. Soc.
115
,
6295
(
1993
).
62.
J. J.
Stry
and
J. F.
Garvey
,
Int. J. Mass Spectrom. Ion Process.
138
,
241
(
1994
).
63.
S. F.
Yang
,
S. M.
Brereton
,
M. D.
Wheeler
, and
A. M.
Ellis
,
J. Phys. Chem. A
110
,
1791
(
2006
).
64.
A.
Boatwright
,
J.
Jeffs
, and
A. J.
Stace
,
J. Phys. Chem. A
111
,
7481
(
2007
).
65.
S. S.
Lin
,
Rev. Sci. Instrum.
44
,
516
(
1973
);
J. Q.
Searcy
and
J. B.
Fenn
,
J. Chem. Phys.
61
,
5282
(
1974
);
V.
Hermann
,
B. D.
Kay
, and
A. W.
Castleman
,Jr.
,
Chem. Phys.
72
,
185
(
1982
);
H. C.
Chang
,
C. C.
Wu
, and
J. L.
Kuo
,
Int. Rev. Phys. Chem.
24
,
553
(
2005
).
66.
H.
Shinohara
,
U.
Nagashima
,
H.
Tanaka
, and
N.
Nishi
,
J. Chem. Phys.
83
,
4183
(
1985
);
S.
Wei
,
Z.
Shi
, and
A. W.
Castleman
,
J. Chem. Phys.
94
,
3268
(
1991
).
67.
M.
Schmidt
,
A.
Masson
,
C.
Brechignac
, and
H. P.
Cheng
,
J. Chem. Phys.
126
,
154315
(
2007
).
68.
F.
Ferreira da Silva
,
P.
Bartl
,
S.
Denifl
,
O.
Echt
,
T. D.
Märk
, and
P.
Scheier
,
Phys. Chem. Chem. Phys.
11
,
9791
(
2009
).
69.
P. L. M.
Plummer
and
T. S.
Chen
,
J. Phys. Chem.
87
,
4190
(
1983
);
D. J.
Wales
,
M. A.
Miller
, and
T. R.
Walsh
,
Nature (London)
394
,
758
(
1998
);
J. L.
Kuo
,
C. V.
Ciobanu
,
L.
Ojamae
,
I.
Shavitt
, and
S. J.
Singer
,
J. Chem. Phys.
118
,
3583
(
2003
).
70.
V.
Chihaia
,
S.
Adams
, and
W. F.
Kuhs
,
Chem. Phys.
297
,
271
(
2004
).
71.
P. L. M.
Plummer
,
Can. J. Phys.
81
325
(
2003
);
D. J.
Wales
and
M. P.
Hodges
,
Chem. Phys. Lett.
286
,
65
(
1998
).
72.
A.
Khan
,
Chem. Phys. Lett.
319
,
440
(
2000
);
E. G.
Diken
,
N. I.
Hammer
,
M. A.
Johnson
,
R. A.
Christie
, and
K. D.
Jordan
,
J. Chem. Phys.
123
,
164309
(
2005
).
[PubMed]
73.
M. V.
Avdeev
,
A. A.
Khokhryakov
,
T. V.
Tropin
,
G. V.
Andrievsky
,
V. K.
Klochkov
,
L. I.
Derevyanchenko
,
L.
Rosta
,
V. M.
Garamus
,
V. B.
Priezzhev
,
M. V.
Korobov
, and
V. L.
Aksenov
,
Langmuir
20
,
4363
(
2004
).
74.
J. H.
Walther
,
R. L.
Jaffe
,
E. M.
Kotsalis
,
T.
Werder
,
T.
Halicioglu
, and
P.
Koumoutsakos
,
Carbon
42
,
1185
(
2004
).
75.
C. M.
Sayes
,
J. D.
Fortner
,
W.
Guo
,
D.
Lyon
,
A. M.
Boyd
,
K. D.
Ausman
,
Y. J.
Tao
,
B.
Sitharaman
,
L. J.
Wilson
,
J. B.
Hughes
,
J. L.
West
, and
V. L.
Colvin
,
Nano Lett.
4
,
1881
(
2004
).
76.
M. S.
Amer
,
J. A.
Elliott
,
J. F.
Maguire
, and
A. H.
Windle
,
Chem. Phys. Lett.
411
,
395
(
2005
);
J.
Hernández-Rojas
,
J.
Breton
,
J. M. G.
Llorente
, and
D. J.
Wales
,
J. Phys. Chem. B
110
,
13357
(
2006
).
[PubMed]
77.
R.
Ludwig
and
A.
Appelhagen
,
Angew. Chem., Int. Ed.
44
,
811
(
2005
).
78.
J.
Kim
,
S. B.
Suh
, and
K. S.
Kim
,
J. Chem. Phys.
111
,
10077
(
1999
);
M.
Losada
and
S.
Leutwyler
,
J. Chem. Phys.
117
,
2003
(
2002
);
H. M.
Lee
,
S.
Lee
, and
K. S.
Kim
,
J. Chem. Phys.
119
,
187
(
2003
);
E. M.
Myshakin
,
K.
Diri
, and
K. D.
Jordan
,
J. Phys. Chem. A
108
,
6758
(
2004
);
K.
Diri
,
E. M.
Myshakin
, and
K. D.
Jordan
,
J. Phys. Chem. A
109
,
4005
(
2005
);
[PubMed]
M.
Yang
,
P.
Senet
, and
C. V.
Alsenoy
,
Int. J. Quantum Chem.
101
,
535
(
2005
);
J. M.
Herbert
and
M.
Head-Gordon
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
14282
(
2006
);
[PubMed]
J.
Hernández-Rojas
,
B. S.
Gonzalez
,
T.
James
, and
D. J.
Wales
,
J. Chem. Phys.
125
,
224302
(
2006
);
[PubMed]
T.
Sommerfeld
,
S. D.
Gardner
,
A.
DeFusco
, and
K. D.
Jordan
,
J. Chem. Phys.
125
,
174301
(
2006
).
[PubMed]
79.
L.
Fomina
,
A.
Reyes
,
P.
Guadarrama
, and
S.
Fomine
,
Int. J. Quantum Chem.
97
,
679
(
2004
).
80.
D.
Kreisle
,
O.
Echt
,
M.
Knapp
, and
E.
Recknagel
,
Phys. Rev. A
33
,
768
(
1986
);
T. D.
Märk
and
P.
Scheier
,
J. Chem. Phys.
87
,
1456
(
1987
).
81.
K.
Hansen
and
U.
Näher
,
Phys. Rev. A
60
,
1240
(
1999
);
J.
Borggreen
,
K.
Hansen
,
F.
Chandezon
,
T.
Døssing
,
M.
Elhajal
, and
O.
Echt
,
Phys. Rev. A
62
,
013202
(
2000
).
82.
C. E.
Klots
,
Z. Phys. D: At., Mol. Clusters
21
,
335
(
1991
).
83.
S.
Prasalovich
,
K.
Hansen
,
M.
Kjellberg
,
V. N.
Popok
, and
E. E. B.
Campbell
,
J. Chem. Phys.
123
,
084317
(
2005
).
84.
Belau
 et al have derived evaporation energies of small (H2O)n from appearance energies of (H2O)nH+ (Ref. 14). They conclude that (H2O)5 is a magic number.
85.
Y. K.
Lau
,
S.
Ikuta
, and
P.
Kebarle
,
J. Am. Chem. Soc.
104
,
1462
(
1982
);
Y. -S.
Wang
,
C. -H.
Tsai
,
Y. T.
Lee
,
H. -C.
Chang
,
J. C.
Jiang
,
O.
Asvany
,
S.
Schlemmer
, and
D.
Gerlich
,
J. Phys. Chem. A
107
,
4217
(
2003
).
86.
C. E.
Klots
,
J. Phys. Chem.
92
,
5864
(
1988
).
87.
T. F.
Magnera
,
D. E.
David
, and
J.
Michl
,
Chem. Phys. Lett.
123
,
327
(
1986
);
T.
Leisner
,
O.
Echt
,
O.
Kandler
,
X. Y.
Yan
, and
E.
Recknagel
,
Chem. Phys. Lett.
148
,
386
(
1988
);
P.
Scheier
and
T. D.
Märk
,
Chem. Phys. Lett.
148
,
393
(
1988
).
88.
M.
Foltin
,
V.
Grill
,
T.
Rauth
,
Z.
Herman
, and
T. D.
Märk
,
Phys. Rev. Lett.
68
,
2019
(
1992
).
89.
C. A.
Woodward
,
M. P.
Dobson
, and
A. J.
Stace
,
J. Phys. Chem. A
101
,
2279
(
1997
).
90.
B.
von Issendorff
,
H.
Haberland
,
R.
Fröchtenicht
, and
J. P.
Toennies
,
Chem. Phys. Lett.
233
,
23
(
1995
);
O.
Echt
,
R.
Parajuli
,
S.
Matt
,
A.
Stamatovic
,
P.
Scheier
, and
T. D.
Märk
,
Chem. Phys. Lett.
361
,
91
(
2002
);
J.
Fedor
,
R.
Parajuli
,
S.
Matt-Leubner
,
O.
Echt
,
F.
Hagelberg
,
K.
Gluch
,
A.
Stamatovic
,
M.
Probst
,
P.
Scheier
, and
T. D.
Märk
,
Phys. Rev. Lett.
91
,
133401
(
2003
).
[PubMed]
91.
K.
Nauta
and
R. E.
Miller
,
Science
287
,
293
(
2000
).
92.
H. M.
Lee
,
S. B.
Suh
,
P.
Tarakeshwar
, and
K. S.
Kim
,
J. Chem. Phys.
122
,
044309
(
2005
).
You do not currently have access to this content.