We studied proton dynamics of a short hydrogen bond of the crystalline sodium hydrogen bissulfate, a hydrogen-bonded ferroelectric system. Our approach was based on the established Car–Parrinello molecular dynamics (CPMD) methodology, followed by an a posteriori quantization of the OH stretching motion. The latter approach is based on snapshot structures taken from CPMD trajectory, calculation of proton potentials, and solving of the vibrational Schrödinger equation for each of the snapshot potentials. The so obtained contour of the OH stretching band has the center of gravity at about 1540cm1 and a half width of about 700cm1, which is in qualitative agreement with the experimental infrared spectrum. The corresponding values for the deuterated form are 1092 and 600cm1, respectively. The hydrogen probability densities obtained by solving the vibrational Schrödinger equation allow for the evaluation of potential of mean force along the proton transfer coordinate. We demonstrate that for the present system the free energy profile is of the single-well type and features a broad and shallow minimum near the center of the hydrogen bond, allowing for frequent and barrierless proton (or deuteron) jumps. All the calculated time-averaged geometric parameters were in reasonable agreement with the experimental neutron diffraction data. As the present methodology for quantization of proton motion is applicable to a variety of hydrogen-bonded systems, it is promising for potential use in computational enzymology.

1.
Z. D.
Nagel
and
J. P.
Klinman
,
Nat. Chem. Biol.
5
,
543
(
2009
).
2.
C. R.
Pudney
,
S.
Hay
,
C.
Levy
,
J. Y.
Pang
,
M. J.
Sutcliffe
,
D.
Leys
, and
N. S.
Scrutton
,
J. Am. Chem. Soc.
131
,
17072
(
2009
).
3.
S. P.
Webb
,
T.
Iordanov
, and
S.
Hammes-Schiffer
,
J. Chem. Phys.
117
,
4106
(
2002
).
4.
G. M.
Chaban
,
J. O.
Jung
, and
R. B.
Gerber
,
J. Chem. Phys.
111
,
1823
(
1999
).
5.
J.
Stare
,
J.
Panek
,
J.
Eckert
,
J.
Grdadolnik
,
J.
Mavri
, and
D.
Hadži
,
J. Phys. Chem. A
112
,
1576
(
2008
).
6.
O.
Lehtonen
,
J.
Hartikainen
,
K.
Rissanen
,
O.
Ikkala
, and
L. O.
Pietilä
,
J. Chem. Phys.
116
,
2417
(
2002
).
7.
M.
Broccio
,
D.
Costa
,
Y.
Liu
, and
S. H.
Chen
,
J. Chem. Phys.
124
,
084501
(
2006
).
8.
K.
Demšar
,
J.
Stare
, and
J.
Mavri
,
J. Mol. Struct.
844–845
,
215
(
2007
).
9.
M.
Boczar
,
L.
Boda
, and
M. J.
Wójcik
,
J. Chem. Phys.
125
,
084709
(
2006
).
10.
C. C.
Wilson
and
C. A.
Morrison
,
Chem. Phys. Lett.
362
,
85
(
2002
).
11.
A.
Jezierska
,
J. J.
Panek
,
A.
Koll
, and
J.
Mavri
,
J. Chem. Phys.
126
,
205101
(
2007
).
12.
G. S.
Denisov
,
J.
Mavri
, and
L.
Sobczyk
, in
Hydrogen Bonding—New Insights
, edited by
S. J.
Grabowski
(
Springer
,
New York
,
2006
), p.
377
.
13.
Y. A.
Yan
,
G. M.
Krishnan
, and
O.
Kühn
,
Chem. Phys. Lett.
464
,
230
(
2008
).
14.
A.
Jezierska
and
J. J.
Panek
,
J. Chem. Theory Comput.
4
,
375
(
2008
).
15.
J.
Mavri
and
J.
Grdadolnik
,
J. Phys. Chem. A
105
,
2045
(
2001
).
16.
A.
Warshel
,
Computer Modeling of Chemical Reactions in Enzymes and Solutions
(
Wiley
,
New York
,
1991
).
17.
R.
Blinc
and
R.
Pirc
, in
Theoretical Treatments of Hydrogen Bonding
, edited by
D.
Hadži
(
Wiley
,
Chichester
,
1997
), p.
229
.
18.
U.
Mikac
,
D.
Hadži
, and
R.
Blinc
,
Ferroelectrics
239
,
375
(
2000
).
19.
W. W.
Cleland
and
M. M.
Kreevoy
,
Science
264
,
1887
(
1994
).
20.
M.
Garcia-Viloca
,
J.
Gao
,
M.
Karplus
, and
D. G.
Truhlar
,
Science
303
,
186
(
2004
).
21.
S.
Pantano
,
F.
Alber
, and
P.
Carloni
,
J. Mol. Struct.
530
,
177
(
2000
).
22.
M.
Garcia-Viloca
,
A.
González-Lafont
, and
J. M.
Lluch
,
J. Am. Chem. Soc.
119
,
1081
(
1997
).
23.
M.
Garcia-Viloca
,
A.
González-Lafont
, and
J. M.
Lluch
,
J. Am. Chem. Soc.
121
,
9198
(
1999
).
24.
P.
Colomban
,
Proton Conductors: Solids, Membranes, and Gels—Materials and Devices
(
Cambridge University Press
,
Cambridge
,
1992
).
25.
D.
Merunka
and
B.
Rakvin
,
Phys. Rev. B
79
,
132108
(
2009
).
26.
R.
Blinc
,
B.
Žekš
,
A.
Levstik
,
C.
Filipič
,
J.
Slak
,
M.
Burgar
,
I.
Zupančič
,
L. A.
Shuvalov
, and
A. I.
Baranov
,
Phys. Rev. Lett.
43
,
231
(
1979
).
27.
R.
Blinc
,
B.
Žekš
,
J. F.
Sampaio
,
A. S. T.
Pires
, and
F. C.
Sabarreto
,
Phys. Rev. B
20
,
1991
(
1979
).
28.
B. C.
Wood
and
N.
Marzari
,
Phys. Rev. B
76
,
134301
(
2007
).
29.
J.
Mayers
,
G. F.
Reiter
, and
P.
Platzman
,
J. Mol. Struct.
615
,
275
(
2002
).
30.
G.
Reiter
,
A.
Shukla
,
P. M.
Platzman
, and
J.
Mayers
,
New J. Phys.
10
,
013016
(
2008
).
31.
W.
Münch
,
K. D.
Kreuer
,
U.
Traub
, and
J.
Maier
,
J. Mol. Struct.
381
,
1
(
1996
).
32.
O.
Henri-Rousseau
and
P.
Blaise
, in
Theoretical Treatment of Hydrogen Bonding
, edited by
D.
Hadži
(
Wiley
,
Chichester
,
1997
), p.
165
.
33.
Y.
Yan
,
M.
Petković
,
G. M.
Krishnan
, and
O.
Kühn
,
J. Mol. Struct.
972
,
68
(
2010
).
34.
J.
Stare
and
J.
Mavri
,
Comput. Phys. Commun.
143
,
222
(
2002
).
35.
J.
Stare
and
G. G.
Balint-Kurti
,
J. Phys. Chem. A
107
,
7204
(
2003
).
36.
J.
Mavri
and
J.
Grdadolnik
,
J. Phys. Chem. A
105
,
2039
(
2001
).
37.
N.
Došlić
and
O.
Kühn
,
Z. Phys. Chem.
217
,
1507
(
2003
).
38.
I.
Matanović
and
N.
Došlić
,
J. Phys. Chem. A
109
,
4185
(
2005
).
39.
J. M.
Bowman
,
J. Chem. Phys.
68
,
608
(
1978
).
40.
J. M.
Bowman
,
Acc. Chem. Res.
19
,
202
(
1986
).
41.
G.
Rauhut
,
G.
Knizia
, and
H. J.
Werner
,
J. Chem. Phys.
130
,
054105
(
2009
).
42.
V.
Alexandrov
,
D. M. A.
Smith
,
H.
Rostkowska
,
M. J.
Nowak
,
L.
Adamowicz
, and
W.
McCarthy
,
J. Chem. Phys.
108
,
9685
(
1998
).
43.
R. A.
Relph
,
T. L.
Guasco
,
B. M.
Elliott
,
M. Z.
Kamrath
,
A. B.
McCoy
,
R. P.
Steele
,
D. P.
Schofield
,
K. D.
Jordan
,
A. A.
Viggiano
,
E. E.
Ferguson
, and
M. A.
Johnson
,
Science
327
,
308
(
2010
).
44.
D.
Marx
, in
Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology
, edited by
M.
Ferrario
,
G.
Ciccotti
, and
K.
Binder
(
Springer
,
Berlin
,
2006
), Vol.
704
, p.
507
.
45.
M. H. M.
Olsson
,
J.
Mavri
, and
A.
Warshel
,
Philos. Trans. R. Soc. London, Ser. B
361
,
1417
(
2006
).
46.
M.
Garcia-Viloca
,
C.
Alhambra
,
D. G.
Truhlar
, and
J.
Gao
,
J. Chem. Phys.
114
,
9953
(
2001
).
47.
D.
Homouz
,
G.
Reiter
,
J.
Eckert
,
J.
Mayers
, and
R.
Blinc
,
Phys. Rev. Lett.
98
,
115502
(
2007
).
48.
F.
Fillaux
,
A.
Lautié
,
J.
Tomkinson
, and
G. J.
Kearley
,
Chem. Phys.
154
,
135
(
1991
).
49.
Y.
Matsuo
,
J.
Hatori
,
Y.
Nakashima
, and
S.
Ikehata
,
Solid State Commun.
130
,
269
(
2004
).
50.
C. R. I.
Chisholm
and
S. M.
Haile
,
Solid State Ionics
145
,
179
(
2001
).
51.
R.
Sobiestianskas
,
J.
Banys
,
J.
Grigas
, and
A.
Pawłowski
,
Solid State Ionics
179
,
213
(
2008
).
52.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
53.
L.
Ojamae
,
K.
Hermansson
, and
M.
Probst
,
Chem. Phys. Lett.
191
,
500
(
1992
).
54.
L.
Ojamäe
,
J.
Tegenfeldt
,
J.
Lindgren
, and
K.
Hermansson
,
Chem. Phys. Lett.
195
,
97
(
1992
).
55.
R.
Rey
,
K. B.
Moller
, and
J. T.
Hynes
,
J. Phys. Chem. A
106
,
11993
(
2002
).
56.
K. B.
Møller
,
R.
Rey
, and
J. T.
Hynes
,
J. Phys. Chem. A
108
,
1275
(
2004
).
57.
S. A.
Corcelli
,
C. P.
Lawrence
, and
J. L.
Skinner
,
J. Chem. Phys.
120
,
8107
(
2004
).
58.
W.
Joswig
,
H.
Fuess
, and
G.
Ferraris
,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
38
,
2798
(
1982
).
59.
D.
Marx
and
J.
Hutter
,
Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods
(
Cambridge University Press
,
Cambridge
,
2009
).
60.
M.
Boero
,
A.
Curioni
,
J.
Hutter
,
A.
Isayev
,
A.
Kohlmeyer
,
N.
Nair
,
W.
Quester
, and
Ł.
Walewski
, Car–Parrinello Molecular Dynamics,
1990
2008
.
61.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
62.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
63.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
65.
G. G.
Balint-Kurti
,
R. N.
Dixon
, and
C. C.
Marston
,
Int. Rev. Phys. Chem.
11
,
317
(
1992
).
66.
M.
Catti
,
G.
Ferraris
, and
G.
Ivaldi
,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
35
,
525
(
1979
).
67.
V.
Videnova-Adrabinska
,
J. Mol. Struct.
237
,
367
(
1990
).
68.
69.
G.
Pirc
,
J.
Mavri
,
M.
Novič
, and
J.
Stare
(in preparation).
70.
S. C. L.
Kamerlin
and
A.
Warshel
, “
Examining the case for the effect of barrier compression on tunneling, vibrationally enhanced catalysis, catalytic entropy and related issues
,”
J. Phys. Org. Chem.
(in press).
71.
M.
Garcia-Viloca
,
K.
Nam
,
C.
Alhambra
, and
J. L.
Gao
,
J. Phys. Chem. B
108
,
13501
(
2004
).
72.
K.
Speranskiy
and
M.
Kurnikova
,
J. Chem. Phys.
121
,
1516
(
2004
).
73.
M.
Klähn
,
G.
Mathias
,
C.
Kötting
,
M.
Nonella
,
J.
Schlitter
,
K.
Gerwert
, and
P.
Tavan
,
J. Phys. Chem. A
108
,
6186
(
2004
).
74.
S.
Yang
and
M.
Cho
,
J. Chem. Phys.
131
,
135102
(
2009
).
75.
S. Z.
Li
,
J. R.
Schmidt
,
S. A.
Corcelli
,
C. P.
Lawrence
, and
J. L.
Skinner
,
J. Chem. Phys.
124
,
204110
(
2006
).
76.
C. S.
Kinnaman
,
M. E.
Cremeens
,
F. E.
Romesberg
, and
S. A.
Corcelli
,
J. Am. Chem. Soc.
128
,
13334
(
2006
).
77.
B. A.
Lindquist
and
S. A.
Corcelli
,
J. Phys. Chem. B
112
,
6301
(
2008
).
78.
B. A.
Lindquist
,
R. T.
Haws
, and
S. A.
Corcelli
,
J. Phys. Chem. B
112
,
13991
(
2008
).
79.
J. Y.
Pang
,
N. S.
Scrutton
,
S. P.
de Visser
, and
M. J.
Sutcliffe
,
J. Phys. Chem. A
114
,
1212
(
2010
).
80.
S.
Yang
and
M.
Cho
,
J. Chem. Phys.
123
,
134503
(
2005
).
You do not currently have access to this content.