This paper presents a systematical study of electroviscous effects in nanofluidic channels using a triple layer model and a numerical framework. A chemical dissociation layer is introduced at solid-liquid interfaces to bridge the surface charge condition with the local properties of both solid surfaces and the ionic liquid. The electrokinetic transport in the electrical double layers is modeled by a lattice Poisson–Boltzmann method. The results indicate that there is an ionic concentration leading to the maximum electroviscosity for a given channel height, pH value, and environmental temperature. For a very high ionic concentration, a smaller channel height leads to a higher electroviscosity. When the bulk concentration reduces from 103M to 106M, there is a critical channel height that maximizes the electroviscosity for a given ionic concentration, and the critical height increases with the decreasing ionic concentration. The electroviscosity increases with the pH of electrolyte solutions and is nearly proportional to the environmental temperature. The present study may help to improve the understanding of electrokinetic transport in nanofluidic channels.

1.
H. J.
Butt
,
K.
Graf
, and
M.
Kappl
,
Physics and Chemistry of Interfaces
, 2nd ed. (
Wiley-VCH
,
Weinheim
,
2006
).
2.
R. B.
Schoch
,
J. Y.
Han
, and
P.
Renaud
,
Rev. Mod. Phys.
80
,
839
(
2008
).
3.
D. Q.
Li
,
Electrokinetics in Microfluidics
(
Academic
,
Oxford
,
2004
).
4.
T. M.
Squires
and
S. R.
Quake
,
Rev. Mod. Phys.
77
,
977
(
2005
).
5.
W. R.
Bowen
and
F.
Jenner
,
J. Colloid Interface Sci.
173
,
388
(
1995
).
6.
7.
R. J.
Hunter
,
Zeta Potential in Colloid Science
(
Academic
,
London
,
1981
);
J. A.
Menjivar
and
C.
Rha
,
J. Chem. Phys.
79
,
953
(
1983
).
8.
G. A. H.
Elton
,
Proc. R. Soc. London Ser., A
194
,
259
(
1948
);
G. A. H.
Elton
,
Proc. R. Soc. London, Ser. A
194
,
275
(
1948
).
9.
C. L.
Rice
and
R.
Whitehead
,
J. Phys. Chem.
69
,
4017
(
1965
);
S.
Levine
,
J. R.
Marriott
,
G.
Neale
, and
N.
Epstein
,
J. Colloid Interface Sci.
52
,
136
(
1975
).
10.
G. M.
Mala
,
D. Q.
Li
,
C.
Werner
,
H. J.
JacObasch
, and
Y. B.
Ning
,
Int. J. Heat Fluid Flow
18
,
489
(
1997
);
M. R.
Davidson
and
D. J. E.
Harvie
,
Chem. Eng. Sci.
62
,
4229
(
2007
).
11.
R. P.
Bharti
,
D. J. E.
Harvie
, and
M. R.
Davidson
,
Chem. Eng. Sci.
63
,
3593
(
2008
).
12.
L. Q.
Ren
,
D. Q.
Li
, and
W. L.
Qu
,
J. Colloid Interface Sci.
233
,
12
(
2001
).
13.
L. Q.
Ren
,
W. L.
Qu
, and
D. Q.
Li
,
Int. J. Heat Mass Transfer
44
,
3125
(
2001
).
14.
X. C.
Xuan
,
Microfluid. Nanofluid.
4
,
457
(
2008
).
15.
N. A.
Mortensen
and
A.
Kristensen
,
Appl. Phys. Lett.
92
,
063110
(
2008
).
16.
H.
Sakuma
,
K.
Otsuki
, and
K.
Kurihara
,
Phys. Rev. Lett.
96
,
046104
(
2006
);
[PubMed]
T.
Das
,
S.
Das
, and
S.
Chakraborty
,
J. Chem. Phys.
130
,
244904
(
2009
);
[PubMed]
J. C. T.
Eijkel
and
A.
van den Berg
,
Microfluid. Nanofluid.
1
,
249
(
2005
).
17.
K. D.
Huang
and
R. J.
Yang
,
Nanotechnology
18
,
115701
(
2007
).
18.
R.
Qiao
and
N. R.
Aluru
,
J. Chem. Phys.
118
,
4692
(
2003
).
19.
R.
Qiao
and
N. R.
Aluru
,
Langmuir
21
,
8972
(
2005
).
20.
F. H. J.
van der Heyden
,
D.
Stein
, and
C.
Dekker
,
Phys. Rev. Lett.
95
,
116104
(
2005
).
21.
R.
Qiao
and
N. R.
Aluru
,
Appl. Phys. Lett.
86
,
143105
(
2005
).
22.
S. H.
Behrens
and
D. G.
Grier
,
J. Chem. Phys.
115
,
6716
(
2001
).
23.
J.
Westall
and
H.
Hohl
,
Adv. Colloid Interface Sci.
12
,
265
(
1980
).
24.
F.
Baldessari
and
J. G.
Santiago
,
J. Colloid Interface Sci.
331
,
549
(
2009
).
25.
J.
Gonçalvès
,
P.
Rousseau-Gueutin
, and
A.
Revil
,
J. Colloid Interface Sci.
316
,
92
(
2007
).
26.
M.
Wang
and
Q. J.
Kang
, “
Electrochemomechanical energy conversion efficiency in silica nanochannels
,”
Microfluid. Nanofluid.
(in press).
27.
M.
Wang
,
J.
Liu
, and
S.
Chen
,
Mol. Simul.
33
,
1273
(
2007
).
28.
M.
Wang
and
S. Y.
Chen
,
Comm. Comp. Phys.
3
,
1087
(
2008
).
29.
V. G.
Levich
,
Physico-Chemical Hydrodynamics
(
Prentice-Hall
,
New York
,
1962
).
30.
R. B.
Schoch
and
P.
Renaud
,
Appl. Phys. Lett.
86
,
253111
(
2005
).
31.
Q. S.
Pu
,
J. S.
Yun
,
H.
Temkin
, and
S. R.
Liu
,
Nano Lett.
4
,
1099
(
2004
);
L. J.
Cheng
and
L. J.
Guo
,
Nano Lett.
7
,
3165
(
2007
).
[PubMed]
32.
R.
Qiao
and
N. R.
Aluru
,
Int. J. Multiscale Comp. Eng.
2
,
173
(
2004
).
33.
M.
Wang
,
Scientific Computation with MATLAB
, 2nd ed. (
Publishing House of Electronics Industry
,
Beijing
,
2003
).
34.
J. K.
Wang
,
M.
Wang
, and
Z. X.
Li
,
J. Colloid Interface Sci.
296
,
729
(
2006
).
35.
M.
Wang
and
S.
Chen
,
J. Colloid Interface Sci.
314
,
264
(
2007
).
36.
M.
Wang
and
Q.
Kang
,
Anal. Chem.
81
,
2953
(
2009
).
37.
S.
Chen
and
G. D.
Doolen
,
Annu. Rev. Fluid Mech.
30
,
329
(
1998
).
38.
M. R.
Wang
,
J. K.
Wang
, and
S. Y.
Chen
,
J. Comput. Phys.
226
,
836
(
2007
).
39.
C.
Davidson
and
X. C.
Xuan
,
J. Power Sources
179
,
297
(
2008
);
Y. Q.
Ren
and
D.
Stein
,
Nanotechnology
19
,
195707
(
2008
);
[PubMed]
S.
Pennathur
,
J. C. T.
Eijkel
, and
A.
van den Berg
,
Lab Chip
7
,
1234
(
2007
).
[PubMed]
40.
J. F.
Dufreche
,
V.
Marry
,
N.
Malikova
, and
P.
Turq
,
J. Mol. Liq.
118
,
145
(
2005
);
L.
Joly
,
C.
Ybert
,
E.
Trizac
, and
L.
Bocquet
,
Phys. Rev. Lett.
93
,
257805
(
2004
).
[PubMed]
41.
M.
Wang
,
J.
Liu
, and
S.
Chen
,
Mol. Simul.
33
,
239
(
2007
);
C. D.
Lorenz
,
P. S.
Crozier
,
J. A.
Anderson
, and
A.
Travesset
,
J. Phys. Chem. C
112
,
10222
(
2008
).
42.
H.
Daiguji
,
P. D.
Yang
, and
A.
Majumdar
,
Nano Lett.
4
,
137
(
2004
).
43.
D.
Stein
,
M.
Kruithof
, and
C.
Dekker
,
Phys. Rev. Lett.
93
,
035901
(
2004
).
44.
J.
Lyklema
,
J. Phys.: Condens. Matter
13
,
5027
(
2001
).
45.
B.
Li
and
D. Y.
Kwok
,
J. Chem. Phys.
120
,
947
(
2004
).
You do not currently have access to this content.