Four potential energy surfaces are of current interest for the Ne–CO interaction. Two are high-level fully ab initio surfaces obtained a decade ago using symmetry-adapted perturbation theory and supermolecule coupled-cluster methods. The other two are very recent exchange-Coulomb (XC) model potential energy surfaces constructed by using ab initio Heitler–London interaction energies and literature long range dispersion and induction energies, followed by the determination of a small number of adjustable parameters to reproduce a selected subset of pure rotational transition frequencies for the N20eC12O16 van der Waals cluster. Testing of the four potential energy surfaces against a wide range of available experimental microwave, millimeter-wave, and mid-infrared Ne–CO transition frequencies indicated that the XC potential energy surfaces gave results that were generally far superior to the earlier fully ab initio surfaces. In this paper, two XC model surfaces and the two fully ab initio surfaces are tested for their abilities to reproduce experiment for a wide range of nonspectroscopic Ne–CO gas mixture properties. The properties considered here are relative integral cross sections and the angle dependence of rotational state-to-state differential cross sections, rotational relaxation rate constants for CO(v=2) in Ne–CO mixtures at T=296K, pressure broadening of two pure rotational lines and of the rovibrational lines in the CO fundamental and first overtone transitions at 300 K, and the temperature and, where appropriate, mole fraction dependencies of the interaction second virial coefficient, the binary diffusion coefficient, the interaction viscosity, the mixture shear viscosity and thermal conductivity coefficients, and the thermal diffusion factor. The XC model potential energy surfaces give results that lie within or very nearly within the experimental uncertainties for all properties considered, while the coupled-cluster ab initio surface gives results that agree similarly well for all but one of the properties considered. When the present comparisons are combined with the ability to give accurate spectroscopic transition frequencies for the Ne–CO van der Waals complex, only the XC potential energy surfaces give results that agree well with all extant experimental data for the Ne–CO interaction.

1.
K. -C.
Ng
,
W. J.
Meath
, and
A. R.
Allnatt
,
Chem. Phys.
32
,
175
(
1978
).
2.
K. -C.
Ng
,
W. J.
Meath
, and
A. R.
Allnatt
,
Mol. Phys.
37
,
237
(
1979
).
3.
W. J.
Meath
,
D. J.
Margoliash
,
B. L.
Jhanwar
,
A.
Koide
, and
G. D.
Zeiss
, in
Proceedings of the 14th Jerusalem Symposium on Quantum Chemistry and Biochemistry
, edited by
B.
Pullmann
(
Reidel
,
Dordrecht
,
1981
), pp.
101
115
.
4.
W. J.
Meath
and
M.
Koulis
,
J. Mol. Struct.
226
,
1
(
1991
).
5.
R. J.
LeRoy
,
C.
Bissonnette
,
T. H.
Wu
,
A. K.
Dham
, and
W. J.
Meath
,
Faraday Discuss.
97
,
81
(
1994
).
6.
A. K.
Dham
,
F. R. W.
McCourt
, and
W. J.
Meath
,
J. Chem. Phys.
103
,
8477
(
1995
).
7.
C.
Bissonnette
,
C. E.
Chuaqui
,
K. G.
Crowell
,
R. J.
Le Roy
,
R. J.
Wheatley
, and
W. J.
Meath
,
J. Chem. Phys.
105
,
2639
(
1996
).
8.
H.
Wei
,
R. J.
Le Roy
,
R.
Wheatley
, and
W. J.
Meath
,
J. Chem. Phys.
122
,
084321
(
2005
).
9.
A. K.
Dham
,
F. R. W.
McCourt
, and
W. J.
Meath
,
J. Chem. Phys.
130
,
244310
(
2009
).
10.
K. A.
Walker
,
T.
Ogata
,
W.
Jäger
,
M. C. L.
Gerry
, and
I.
Ozier
,
J. Chem. Phys.
106
,
7519
(
1997
).
11.
G.
Winnewisser
,
B. S.
Dumesh
,
I.
Pak
,
L. A.
Surin
,
F.
Lewen
,
D. A.
Roth
, and
F. S.
Rusin
,
J. Mol. Spectrosc.
192
,
243
(
1998
).
12.
D. A.
Roth
,
I.
Pak
,
L. A.
Surin
,
B. S.
Dumesh
, and
G.
Winnewisser
,
Z. Naturforsch. A
55
,
754
(
2000
).
13.
L. A.
Surin
,
A. V.
Potapov
,
V. A.
Panfilov
,
B. S.
Dumesh
, and
G.
Winnewisser
,
J. Mol. Spectrosc.
230
,
149
(
2005
).
14.
R.
Moszynski
,
T.
Korona
,
P. E. S.
Wormer
, and
A.
van der Avoird
,
J. Phys. Chem. A
101
,
4690
(
1997
).
15.
G. C.
McBane
and
S. M.
Cybulski
,
J. Chem. Phys.
110
,
11734
(
1999
).
16.
R. W.
Randall
,
A. J.
Cliffe
,
B. J.
Howard
, and
A. R. W.
McKellar
,
Mol. Phys.
79
,
1113
(
1993
).
17.
A. R. W.
McKellar
and
M. -C.
Chan
,
Mol. Phys.
93
,
253
(
1998
).
18.
L.
Monchick
and
E. A.
Mason
,
J. Chem. Phys.
35
,
1676
(
1961
);
E. A.
Mason
and
L.
Monchick
,
J. Chem. Phys.
36
,
1622
(
1962
).
19.
S.
Antonova
,
A.
Lin
,
A. P.
Tsakotellis
, and
G. C.
McBane
,
J. Chem. Phys.
110
,
11742
(
1999
).
20.
K. T.
Lorenz
,
D. W.
Chandler
, and
G. C.
McBane
,
J. Phys. Chem. A
106
,
1144
(
2002
).
21.
R. B.
Nerf
, Jr.
and
M. A.
Sonnenberg
,
J. Mol. Spectrosc.
58
,
474
(
1975
).
22.
J. -M.
Colmont
,
L.
Nguyen
,
F.
Rohart
, and
G.
Wlodarczak
,
J. Mol. Spectrosc.
246
,
86
(
2007
).
23.
J. -P.
Bouanich
,
J. Quant. Spectrosc. Radiat. Transf.
12
,
1609
(
1972
).
24.
D. A.
Draegert
and
D.
Williams
,
J. Opt. Soc. Am.
58
,
1399
(
1968
).
25.
D. A.
Hostutler
,
T. C.
Smith
,
G. D.
Hager
,
G. C.
McBane
, and
M. C.
Heaven
,
J. Chem. Phys.
120
,
7483
(
2004
).
26.
J.
Brewer
, “
Determination of mixed viral coefficients
,”
AFOSR
Report No. MRL-2915-C,
1967
;
see also
J. H.
Dymond
,
K. N.
Marsh
, and
R. C.
Wilhoit
, in
Virial Coefficients of Pure Gases and Mixtures
,
Landolt–Börnstein New Series, Group IV: Physical Chemistry
Vol.
21
, edited by
M.
Frenkel
and
K. N.
Marsh
(
Springer
,
New York
,
2003
), subvol. B, p.
64
.
27.
K.
Vatter
,
H. J.
Schmidt
,
E.
Elias
, and
B.
Schramm
,
Ber. Bunsenges. Phys. Chem.
100
,
73
(
1996
).
28.
R. D.
Trengove
,
H. L.
Robjohns
, and
P. J.
Dunlop
,
Ber. Bunsenges. Phys. Chem.
88
,
450
(
1984
).
29.
J.
Kestin
,
S. T.
Ro
, and
W. A.
Wakeham
,
Ber. Bunsenges. Phys. Chem.
86
,
753
(
1982
).
30.
N.
Imaishi
and
J.
Kestin
,
Physica A
126
,
98
(
1984
).
31.
A.
Koide
,
W. J.
Meath
, and
A. R.
Allnatt
,
Chem. Phys.
58
,
105
(
1981
).
32.
H.
Kreek
and
W. J.
Meath
,
J. Chem. Phys.
50
,
2289
(
1969
).
33.
A.
Kumar
and
W. J.
Meath
,
Chem. Phys.
189
,
467
(
1994
).
34.
W. J.
Meath
and
A.
Kumar
,
Int. J. Quantum Chem.
S24
,
501
(
1980
).
35.
A. J.
Thakkar
,
H.
Hettema
, and
P. E. S.
Wormer
,
J. Chem. Phys.
97
,
3252
(
1992
).
36.
H.
Hettema
,
P. E. S.
Wormer
, and
A. J.
Thakkar
,
Mol. Phys.
80
,
533
(
1993
).
37.
J. M.
Hutson
and
S.
Green
, MOLSCAT computer code, version 15,
1994
, available at http://www.giss.nasa.gov/tools/molscat.
38.
M. H.
Alexander
and
D. E.
Manolopoulos
,
J. Chem. Phys.
86
,
2044
(
1987
).
39.
40.
C. W.
McCurdy
and
W. H.
Miller
,
J. Chem. Phys.
67
,
463
(
1977
).
41.
S.
Antonova
,
A.
Lin
,
A. P.
Tsakotellis
, and
G. C.
McBane
,
J. Chem. Phys.
110
,
2384
(
1999
).
42.
D.
Carty
,
A.
Goddard
,
I. R.
Sims
, and
I. W. M.
Smith
,
J. Chem. Phys.
121
,
4671
(
2004
).
43.
F. R. W.
McCourt
,
J. J. M.
Beenakker
,
W. E.
Köhler
, and
I.
Kuščer
,
Nonequilibrium Phenomena in Polyatomic Gases. 1. Dilute Gases
(
Oxford University Press
,
New York
,
1990
).
44.
R. T.
Pack
,
J. Chem. Phys.
78
,
7217
(
1983
).
45.
R.
Moszynski
,
T.
Korona
,
T. G. A.
Heijmen
,
P. E. S.
Wormer
,
A.
van der Avoird
, and
B.
Schramm
,
Pol. J. Chem.
72
,
1479
(
1998
).
46.
G. C.
McBane
and
P.
Valiron
, “PMP MOLSCAT,” a parallel version of MOLSCAT, version 14, available at http://faculty.gvsu.edu/mcbaneg/pmpmolscat.
47.
R.
Shafer
and
R. G.
Gordon
,
J. Chem. Phys.
58
,
5422
(
1973
).
48.
S.
Green
, PRBR_SAVE, an auxiliary program of the MOLSCAT computer code, available at http//www.giss.nasa.gov/tools/molscat.
49.
P. J.
Davis
and
P.
Rabinowitz
,
Numerical Integration
(
Blaisdell
,
Waltham
,
1967
).
50.
G.C.M. is grateful to B. Stewart for pointing out this approach to finding the total classical cross section for a convex hard shell.
51.
A.
Henry
,
D.
Hurtmann
,
M.
MargottinMaclou
, and
A.
Valentin
,
J. Quant. Spectrosc. Radiat. Transf.
56
,
647
(
1996
).
52.
A. S.
Dickinson
and
M. S.
Lee
,
J. Phys. B
18
,
3987
(
1985
).
53.
A. S.
Dickinson
and
M. S.
Lee
,
J. Phys. B
18
,
4177
(
1985
).
54.
A. S.
Dickinson
and
M. S.
Lee
,
J. Phys. B
19
,
3091
(
1986
).
55.
F. R. W.
McCourt
,
J. J. M.
Beenakker
,
W. E.
Köhler
, and
I.
Kuščer
,
Nonequilibrium Phenomena in Polyatomic Gases. 2. Cross Sections, Scattering, and Rarefied Gases
(
Oxford University Press
,
New York
,
1992
).
56.
H.
O’Hara
and
F. J.
Smith
,
J. Comput. Phys.
5
,
328
(
1970
).
57.
F. R. W.
McCourt
, in
Handbook of Molecular Physics and Quantum Chemistry
, Vol.
3
,
Molecules in the Physico-Chemical Environment: Spectroscopy, Dynamics and Bulk Properties
, edited by
S.
Wilson
,
P. F.
Bernath
, and
R.
McWeeney
(
Wiley
,
New York
,
2003
), Chap. 28.
58.
G. C.
Maitland
,
M.
Rigby
,
E. B.
Smith
, and
W. A.
Wakeham
,
Intermolecular Forces: Their Determination and Origin
(
Clarendon
,
Oxford
,
1981
).
59.
A. K.
Dham
and
S. C.
Gupta
,
J. Phys. B
9
,
L127
(
1976
).
60.
K.
Singh
,
A. K.
Dham
, and
S. C.
Gupta
,
J. Phys. B
25
,
679
(
1992
).
61.
R. A.
Aziz
,
W. J.
Meath
, and
A. R.
Allnatt
,
Chem. Phys.
78
,
295
(
1983
).
62.
A.
van der Pol
,
A.
van der Avoird
, and
P. E. S.
Wormer
,
J. Chem. Phys.
92
,
7498
(
1990
).
63.
E. A.
Mason
,
J. Chem. Phys.
27
,
75
(
1957
).
64.
T. S.
Storvick
and
E. A.
Mason
,
J. Chem. Phys.
45
,
3752
(
1966
).
65.
A. K.
Dham
and
S. C.
Gupta
,
J. Phys. B
8
,
2898
(
1975
).
66.
A. K.
Dham
and
W. J.
Meath
,
Chem. Phys.
196
,
125
(
1995
).
67.
Expressions for the polarization factors f02η=1+ψ02 and f12λ=1+5ψ12/3 can be obtained by using Eqs. (7.1-24) and (7.2-7b) of Ref. 43 for ψ02 and ψ12, respectively.
68.
A. K.
Dham
,
W. J.
Meath
,
J. W.
Jechow
, and
F. R. W.
McCourt
,
J. Chem. Phys.
124
,
034308
(
2006
).
69.
A. K.
Dham
,
F. R. W.
McCourt
, and
A. S.
Dickinson
,
J. Chem. Phys.
127
,
054302
(
2007
).
70.
S.
Chapman
and
T. G.
Cowling
,
The Mathematical Theory of Nonuniform Gases
, 3rd ed. (
Cambridge University Press
,
Cambridge, England
,
1970
).
71.
F. R. W.
McCourt
,
Mol. Phys.
101
,
2181
(
2003
).
72.
F. R. W.
McCourt
,
Mol. Phys.
101
,
2409
(
2003
).
73.
F. R. W.
McCourt
,
D.
Weir
,
G. B.
Clark
, and
M.
Thachuk
,
Mol. Phys.
103
,
17
(
2005
).
74.
F. R. W.
McCourt
,
D.
Weir
,
M.
Thachuk
, and
G. B.
Clark
,
Mol. Phys.
103
,
45
(
2005
).
75.
S.
Chapman
,
Philos. Trans. R. Soc. London, Ser. A
217
,
115
(
1917
).
76.
P. S.
Arora
,
J. M.
Symons
,
M. L.
Martin
, and
P. J.
Dunlop
,
Chem. Phys. Lett.
62
,
396
(
1979
).
77.
W. L.
Taylor
and
P. T.
Pickett
,
Int. J. Thermophys.
7
,
837
(
1986
).
78.
W. L.
Taylor
,
J. Chem. Phys.
105
,
8333
(
1996
).
79.
A. K.
Dham
and
W. J.
Meath
,
Mol. Phys.
88
,
339
(
1996
).
80.
R. A.
Aziz
,
M. J.
Slaman
,
A.
Koide
,
A. R.
Allnatt
, and
W. J.
Meath
,
Mol. Phys.
77
,
321
(
1992
).
81.
A. K.
Dham
and
W. J.
Meath
,
Mol. Phys.
99
,
991
(
2001
).
82.
K.
Watanabe
,
A. R.
Allnatt
, and
W. J.
Meath
,
Chem. Phys.
68
,
423
(
1982
).
You do not currently have access to this content.