Self-avoiding polymers in strictly two-dimensional (d=2) melts are investigated by means of molecular dynamics simulation of a standard bead-spring model with chain lengths ranging up to N=2048. The chains adopt compact configurations of typical size R(N)Nν with ν=1/d. The precise measurement of various distributions of internal chain distances allows a direct test of the contact exponents Θ0=3/8, Θ1=1/2, and Θ2=3/4 predicted by Duplantier. Due to the segregation of the chains the ratio of end-to-end distance Re(N) and gyration radius Rg(N) becomes Re2(N)/Rg2(N)5.3<6 for N100 and the chains are more spherical than Gaussian phantom chains. The second Legendre polynomial P2(s) of the bond vectors decays as P2(s)1/s1+νΘ2, thus measuring the return probability of the chain after s steps. The irregular chain contours are shown to be characterized by a perimeter length L(N)R(N)dp of fractal line dimension dp=dΘ2=5/4. In agreement with the generalized Porod scattering of compact objects with fractal contour, the Kratky representation of the intramolecular structure factor F(q) reveals a strong nonmonotonous behavior with qdF(q)1/(qR(N))Θ2 in the intermediate regime of the wave vector q. This may allow to confirm the predicted contour fractality in a real experiment.

1.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca, NY
,
1979
).
2.
B.
Duplantier
,
J. Stat. Phys.
54
,
581
(
1989
).
3.
A. N.
Semenov
and
A.
Johner
,
Eur. Phys. J. E
12
,
469
(
2003
).
4.
J.
Jacobsen
,
N.
Read
, and
H.
Saleur
,
Phys. Rev. Lett.
90
,
090601
(
2003
).
6.
I.
Carmesin
and
K.
Kremer
,
J. Phys. (France)
51
,
915
(
1990
).
7.
B.
Ostrovsky
,
M.
Smith
, and
Y.
Bar-Yam
,
Int. J. Mod. Phys. C
8
,
931
(
1997
).
8.
P.
Nelson
,
T.
Hatton
, and
G.
Rutledge
,
J. Chem. Phys.
107
,
1269
(
1997
).
9.
P.
Polanowski
and
T.
Pakula
,
J. Chem. Phys.
117
,
4022
(
2002
).
10.
N.
Balabaev
,
A.
Darinskii
,
I.
Neelov
,
N.
Lukasheva
, and
I.
Emri
,
Polymer Science Series A
44
,
781
(
2002
).
11.
A.
Yethiraj
,
Macromolecules
36
,
5854
(
2003
).
12.
A.
Yethiraj
,
B. J.
Sung
, and
F.
Lado
,
J. Chem. Phys.
122
,
094910
(
2005
).
13.
A.
Cavallo
,
M.
Müller
, and
K.
Binder
,
Europhys. Lett.
61
,
214
(
2003
).
14.
A.
Cavallo
,
M.
Müller
, and
K.
Binder
,
J. Phys. Chem. B
109
,
6544
(
2005
).
15.
A.
Cavallo
,
M.
Müller
,
J. P.
Wittmer
,
A.
Johner
, and
K.
Binder
,
J. Phys.: Condens. Matter
17
,
S1697
(
2005
).
16.
H.
Meyer
,
T.
Kreer
,
M.
Aichele
,
A.
Cavallo
,
A.
Johner
,
J.
Baschnagel
, and
J.
Wittmer
,
Phys. Rev. E
79
,
050802
(R) (
2009
).
17.
B.
Maier
and
J. O.
Rädler
,
Phys. Rev. Lett.
82
,
1911
(
1999
).
18.
X.
Wang
and
V. J.
Foltz
,
J. Chem. Phys.
121
,
8158
(
2004
).
19.
G. T.
Gavranovic
,
J.
Deutsch
, and
G.
Fuller
,
Macromolecules
38
,
6672
(
2005
).
20.
F.
Sun
,
A.
Dobrynin
,
D.
Shirvanyants
,
H.
Lee
,
K.
Matyjaszewski
,
G.
Rubinstein
,
M.
Rubinstein
, and
S.
Sheiko
,
Phys. Rev. Lett.
99
,
137801
(
2007
).
21.
J.
Zhao
and
S.
Granick
,
Macromolecules
40
,
1243
(
2007
).
22.
S.
Srivastava
and
J.
Basu
,
J. Comput. Phys.
130
,
224907
(
2009
).
23.
B.
Maier
and
J. O.
Rädler
,
Macromolecules
33
,
7185
(
2000
).
24.
B.
Maier
and
J. O.
Rädler
,
Macromolecules
34
,
5723
(
2001
).
25.
B.
Mandelbrot
,
The Fractal Geometry of Nature
(
Freeman
,
San Francisco, CA
,
1982
).
26.
J.
Higgins
and
H.
Benoît
,
Polymers and Neutron Scattering
(
Oxford University Press
,
Oxford
,
1996
).
27.
H. D.
Bale
and
P. W.
Schmidt
,
Phys. Rev. Lett.
53
,
596
(
1984
).
28.
P. Z.
Wong
and
A. J.
Bray
,
Phys. Rev. Lett.
60
,
1344
(
1988
).
29.
G. S.
Grest
and
K.
Kremer
,
Phys. Rev. A
33
,
3628
(
1986
).
30.
K.
Kremer
and
G.
Grest
,
J. Chem. Phys.
92
,
5057
(
1990
).
31.
B.
Dünweg
,
J. Chem. Phys.
99
,
61
(
1993
).
32.
Computational Soft Matter: From Synthetic Polymers to Proteins
,
NIC Series
Vol.
23
, edited by
N.
Attig
,
K.
Binder
,
H.
Grubmüller
, and
K.
Kremer
(
John von Neumann Institute of Computing
,
Jülich
,
2004
).
33.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation—From Algorithms to Applications
, 2nd ed. (
Academic
,
San Diego
,
2002
).
34.
P. M.
Chaikin
and
T. C.
Lubensky
,
Principles of Condensed Matter Physics
(
Cambridge University Press
,
New York
,
1995
).
35.
S. J.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
36.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
Oxford
,
1986
).
37.
J. P.
Wittmer
,
P.
Beckrich
,
H.
Meyer
,
A.
Cavallo
,
A.
Johner
, and
J.
Baschnagel
,
Phys. Rev. E
76
,
011803
(
2007
).
38.
J. P.
Wittmer
,
H.
Meyer
,
J.
Baschnagel
,
A.
Johner
,
S. P.
Obukhov
,
L.
Mattioni
,
M.
Müller
, and
A. N.
Semenov
,
Phys. Rev. Lett.
93
,
147801
(
2004
).
39.
R.
Auhl
,
R.
Everaers
,
G.
Grest
,
K.
Kremer
, and
S.
Plimpton
,
J. Chem. Phys.
119
,
12718
(
2003
).
40.
J.
des Cloizeaux
and
G.
Jannink
,
Polymers in Solution: Their Modelling and Structure
(
Clarendon
,
Oxford
,
1990
).
41.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1964
).
42.
R.
Everaers
,
I.
Graham
, and
M.
Zuckermann
,
J. Phys. A
28
,
1271
(
1995
).
43.
M.
Bishop
and
C. J.
Satiel
,
J. Chem. Phys.
85
,
6728
(
1986
).
44.
J.
Rudnick
and
G.
Gaspari
,
J. Phys. A
19
,
L191
(
1986
).
45.
J.
Aronovitz
and
D.
Nelson
,
J. Phys. (Paris)
47
,
1445
(
1986
).
You do not currently have access to this content.