The Fermi level has historically been assumed to be the only energy-level from which carriers are injected at metal/semiconductor interfaces. In traditional semiconductor device physics, this approximation is reasonable as the thermal distribution of delocalized states in the semiconductor tends to dominate device characteristics. However, in the case of organic semiconductors the weak intermolecular interactions results in highly localized electronic states, such that the thermal distribution of carriers in the metal may also influence device characteristics. In this work we demonstrate that the Fermi–Dirac distribution of carriers in the metal has a much more significant impact on charge injection at metal/organic interfaces than has previously been assumed. An injection model which includes the effect of the Fermi–Dirac electron distribution was proposed. This model has been tested against experimental data and was found to provide a better physical description of charge injection. This finding indicates that the thermal distribution of electronic states in the metal should, in general, be considered in the study of metal/organic interfaces.

1.
C. W.
Tang
and
S. A.
VanSlyke
,
Appl. Phys. Lett.
51
,
913
(
1987
).
2.
M. A.
Baldo
,
D. F.
O'Brien
,
Y.
You
,
A.
Shoustikov
,
S.
Sibley
,
M. E.
Thompson
, and
S. R.
Forrest
,
Nature (London)
395
,
151
(
1998
).
3.
L. L.
Chua
,
J.
Zaumseil
,
J. F.
Chang
,
E. C. W.
Ou
,
P. K. H.
Ho
,
H.
Sirringhaus
, and
R. H.
Friend
,
Nature (London)
434
,
194
(
2005
).
4.
L.
Wang
,
M. H.
Yoon
,
G.
Lu
,
Y.
Yang
,
A.
Facchetti
, and
T. J.
Marks
,
Nature Mater.
6
,
317
(
2007
).
5.
T. N.
Ng
,
W. R.
Silveira
, and
J. A.
Marohn
,
Phys. Rev. Lett.
98
,
066101
(
2007
).
6.
W. R.
Silveira
and
J. A.
Marohn
,
Phys. Rev. Lett.
93
,
116104
(
2004
).
7.
G.
Heimel
,
L.
Romaner
,
J. -L.
Bredas
, and
E.
Zojer
,
Phys. Rev. Lett.
96
,
196806
(
2006
).
8.
M. G.
Betti
,
A.
Kanjilal
,
C.
Mariani
,
H.
Vazquez
,
Y. J.
Dappe
,
J.
Ortega
, and
F.
Flores
,
Phys. Rev. Lett.
100
,
027601
(
2008
).
9.
S.
Bedwani
,
D.
Wegner
,
M. F.
Crommie
, and
A.
Rochefort
,
Phys. Rev. Lett.
101
,
216105
(
2008
).
10.
Y.
Preezant
and
N.
Tessler
,
Phys. Rev. B
74
,
235202
(
2006
).
11.
N. D.
Nguyen
,
M.
Schmeits
, and
H. P.
Loebl
,
Phys. Rev. B
75
,
075307
(
2007
).
12.
P.
Sony
,
P.
Puschnig
,
D.
Nabok
, and
C.
Ambrosch-Draxl
,
Phys. Rev. Lett.
99
,
176401
(
2007
).
13.
N. S.
Averkiev
,
V. A.
Zakrevskii
,
I. V.
Rozhansky
, and
N. T.
Sudar
,
Appl. Phys. Lett.
94
,
233308
(
2009
).
14.
S. L. M.
van Mensfoort
and
R.
Coehoorn
,
Phys. Rev. Lett.
100
,
086802
(
2008
).
15.
Z. B.
Wang
,
M. G.
Helander
,
S. W.
Tsang
, and
Z. H.
Lu
,
Phys. Rev. B
78
,
193303
(
2008
).
16.
M. A.
Baldo
and
S. R.
Forrest
,
Phys. Rev. B
64
,
085201
(
2001
).
17.
F.
Neumann
,
Y. A.
Genenko
,
C.
Melzer
,
S. V.
Yampolskii
, and
H.
von Seggern
,
Phys. Rev. B
75
,
205322
(
2007
).
18.
Y.
Preezant
and
N.
Tessler
,
J. Appl. Phys.
93
,
2059
(
2003
).
19.
N.
Binggeli
and
M.
Altarelli
,
Phys. Rev. Lett.
96
,
036805
(
2006
).
20.
Y. N.
Gartstein
and
E. M.
Conwell
,
Chem. Phys. Lett.
217
,
41
(
1994
).
21.
V. I.
Arkhipov
,
E. V.
Emelianova
,
Y. H.
Tak
, and
H.
Bässler
,
J. Appl. Phys.
84
,
848
(
1998
).
22.
U.
Wolf
,
V. I.
Arkhipov
, and
H.
Bässler
,
Phys. Rev. B
59
,
7507
(
1999
).
23.
H.
Bässler
,
Phys. Status Solidi B
175
,
15
(
1993
).
24.
V. I.
Arkhipov
,
U.
Wolf
, and
H.
Bäsler
,
Phys. Rev. B
59
,
7514
(
1999
).
25.
U.
Wolf
,
S.
Barth
, and
H.
Bassler
,
Appl. Phys. Lett.
75
,
2035
(
1999
).
26.
V. I.
Arkhipov
,
E. V.
Emelianova
, and
G. J.
Adriaenssens
,
Phys. Rev. B
64
,
125125
(
2001
).
27.
Z. G.
Yu
,
D. L.
Smith
,
A.
Saxena
,
R. L.
Martin
, and
A. R.
Bishop
,
Phys. Rev. B
63
,
085202
(
2001
).
28.
J. A.
Freire
and
G.
Voss
,
J. Chem. Phys.
122
,
124705
(
2005
).
29.
T.
van Woudenbergh
,
J.
Wildeman
, and
P. W. M.
Blom
,
Phys. Rev. B
71
,
205216
(
2005
).
30.
M. M.
Mandoc
,
B.
de Boer
,
G.
Paasch
, and
P. W. M.
Blom
,
Phys. Rev. B
75
,
193202
(
2007
).
31.
A.
Miller
and
E.
Abrahams
,
Phys. Rev.
120
,
745
(
1960
).
32.
M.
Pollak
and
B.
Shklovskii
,
Hopping Transport in Solids
(
Elsevier
,
Amsterdam
,
1985
).
33.
D. F.
Blossey
,
Phys. Rev. B
9
,
5183
(
1974
).
34.
M. G.
Helander
,
Z. B.
Wang
,
M. T.
Greiner
,
J.
Qiu
, and
Z. H.
Lu
,
Rev. Sci. Instrum.
80
,
033901
(
2009
).
35.
K.
Kokko
,
E.
Ojala
, and
K.
Mansikka
,
J. Phys.: Condens. Matter
2
,
4587
(
1990
).
36.
I. H.
Campbell
,
T. W.
Hagler
,
D. L.
Smith
, and
J. P.
Ferraris
,
Phys. Rev. Lett.
76
,
1900
(
1996
).
37.
G. G.
Malliaras
,
J. R.
Salem
,
P. J.
Brock
, and
J. C.
Scott
,
J. Appl. Phys.
84
,
1583
(
1998
).
38.
S. W.
Tsang
,
M. W.
Denhoff
,
Y.
Tao
, and
Z. H.
Lu
,
Phys. Rev. B
78
,
081301
(
2008
).
39.
H. P.
Myers
,
Introductory Solid State Physics
, 2nd ed. (
CRC
,
Cleveland
,
1997
).
You do not currently have access to this content.