Vibrational electron energy loss spectroscopy (EELS) has been used to characterize the adsorption of acetic acid on Si(111)7×7 at room temperature and as a function of annealing temperature. At room temperature, acetic acid is found to undergo OH dissociative adsorption to form predominantly unidentate adstructure. The equilibrium geometry and the corresponding characteristic vibrational wavenumbers of the adstructures were obtained by density functional theory calculations and are found to be in good accord with the vibrational EELS data. Annealing the sample near 473 K marked the onset of CO dissociation of the acetate adstructure with the emergence of SiOSi vibrational modes at 720 and 1020cm1. Further annealing to 673 K caused a marked intensity reduction in the CC stretch at 930cm1 and in the CH3 vibrational features at 1360 and 2990cm1, suggesting further dissociation of the adstructures. The complete removal of the blueshifted SiH stretching mode at 2275cm1 upon further annealing to 773 K is consistent with the recombinative desorption of H2 from Si monohydrides expected in this temperature range. The emergence of the SiC stretching mode at 830cm1 at 873 K is in good accord with the formation of SiC. Similar thermal evolution of the vibrational features have also been observed for acetic acid adsorption on a sputtered Si(111) surface.

1.
F.
Cattaruzza
,
A.
Cricenti
,
A.
Flamini
,
M.
Girasole
,
G.
Longo
,
A.
Mezzi
, and
T.
Prosperi
,
J. Mater. Chem.
14
,
1461
(
2004
).
2.
M.
Perring
,
S.
Dutta
,
S.
Arafat
,
M.
Mitchell
,
P. J. A.
Kenis
, and
N. B.
Bowden
,
Langmuir
21
,
10537
(
2005
).
3.
A.
Lopez
,
T.
Heller
,
T.
Bitzer
, and
N. V.
Richardson
,
Chem. Phys.
277
,
1
(
2002
).
4.
A.
Lopez
,
Q.
Chen
, and
N. V.
Richardson
,
Surf. Interface Anal.
33
,
441
(
2002
).
5.
J. Y.
Huang
,
Y. S.
Ning
,
K. S.
Yong
,
Y. H.
Cai
,
H. H.
Tang
,
Y. X.
Shao
,
S. F.
Alshahateet
,
Y. M.
Sun
, and
G. Q.
Xu
,
Langmuir
23
,
6218
(
2007
).
6.
T. R.
Lefwich
and
A. V.
Teplyakov
,
Surf. Sci. Rep.
63
,
1
(
2008
).
7.
H.
Asanuma
,
G. P.
Lopinski
, and
H. Z.
Yu
,
Langmuir
21
,
5013
(
2005
).
8.
M.
Ebrahimi
,
J. F.
Rios
, and
K. T.
Leung
,
J. Phys. Chem. C
113
,
281
(
2009
).
9.
H. K.
Lee
,
K.
Kim
,
J.
Han
,
T. H.
Kang
,
J. W.
Chung
, and
B.
Kim
,
Phys. Rev. B
77
,
115324
(
2008
).
10.
H. J.
Kim
and
J. H.
Cho
,
Phys. Rev. B
72
,
195305
(
2005
).
11.
M.
Carbone
and
R.
Caminiti
,
Surf. Sci.
602
,
852
(
2008
).
12.
H. J.
Kim
and
J. H.
Cho
,
J. Phys. Chem. C
112
,
6947
(
2008
).
13.
E.
Hwang
,
D. H.
Kim
,
Y. J.
Hwang
,
A.
Kim
,
S.
Hong
, and
S.
Kim
,
J. Phys. Chem. C
111
,
5941
(
2007
).
14.
M. A.
Filler
,
J. A.
Van Deventer
,
A. J.
Keung
, and
S. F.
Bent
,
J. Am. Chem. Soc.
128
,
770
(
2006
).
15.
D. H.
Kim
,
E.
Hwang
,
S.
Hong
, and
S.
Kim
,
Surf. Sci.
600
,
3629
(
2006
).
16.
K.
Takayanagi
,
T.
Tanishiro
,
S.
Takahashi
, and
M.
Takahashi
,
J. Vac. Sci. Technol. A
3
,
1502
(
1985
).
17.
S.
Tanaka
,
M.
Onchi
, and
M.
Nishijima
,
Chem. Phys. Lett.
146
,
67
(
1988
).
18.
J. Y.
Huang
,
H. G.
Huang
,
K. Y.
Lin
,
Q. P.
Liu
,
Y. M.
Sun
, and
G. Q.
Xu
,
Surf. Sci.
549
,
255
(
2004
).
19.
J. Y.
Huang
,
Y. X.
Shao
,
H. G.
Huang
,
Y. H.
Cai
,
Y.
Sheng Ning
,
H. H.
Tang
,
Q. P.
Liu
,
S. F.
Alshahateet
,
Y. M.
Sun
, and
G. Q.
Xu
,
J. Phys. Chem. B
109
,
19831
(
2005
).
20.
D.
Hu
, Ph.D. thesis,
University of Waterloo
,
1993
.
21.
M.
Nishijima
,
K.
Edamoto
,
Y.
Kubota
,
S.
Tanaka
, and
M.
Onchi
,
J. Chem. Phys.
84
,
6458
(
1986
).
22.
K.
Edamoto
,
Y.
Kubota
,
M.
Onchi
, and
M.
Nishijima
,
Surf. Sci.
146
,
L533
(
1984
).
23.
H.
Kobayashi
,
K.
Edamoto
,
M.
Onchi
, and
M.
Nishijima
,
J. Chem. Phys.
78
,
7429
(
1983
).
24.
R. P.
Young
,
Can. J. Chem.
47
,
2237
(
1969
).
25.
T.
Shimanouchi
,
Tables of Molecular Vibrational Frequencies Consolidated
(
National Bureau of Standards
,
Washington, DC
,
1972
), Vol.
I
, pp.
1
160
.
26.
K.
Ito
and
H. J.
Bernstein
,
Can. J. Chem.
34
,
170
(
1956
).
27.
M.
Haurie
and
A.
Novak
,
J. Chim. Phys. Phys.-Chim. Biol.
62
,
137
(
1965
).
28.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN03, Revision A.1, Gaussian, Inc., Pittsburgh PA,
2003
.
29.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
30.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
31.
D. G.
Zhao
,
S. J.
Xu
,
M. H.
Xie
, and
S. Y.
Tong
,
Appl. Phys. Lett.
83
,
677
(
2003
).
32.
W.
Bock
,
H.
Gnaser
, and
H.
Oechsner
,
Surf. Sci.
282
,
333
(
1993
).
33.
H.
Ibach
,
H. D.
Bruchmann
, and
H.
Wagner
,
Appl. Phys. A: Mater. Sci. Process.
29
,
113
(
1982
).
34.
R. T.
Sanderson
,
Chemical Bonds and Bond Energy
(
Academic
,
New York
,
1976
).
35.
M.
Niwano
,
M.
Terashi
, and
J.
Kuge
,
Surf. Sci.
420
,
6
(
1999
).
36.
K.
Oura
,
V. G.
Lifshits
,
A. A.
Saranin
,
A. V.
Zotov
, and
M.
Katayama
,
Surf. Sci. Rep.
35
,
1
(
1999
).
37.
S.
Tanaka
,
M.
Onchi
, and
M.
Nishijima
,
J. Chem. Phys.
91
,
2712
(
1989
).
You do not currently have access to this content.