We study the translocation of a polymer through a nanopore by means of dissipative particle dynamics (DPD). Unlike Langevin approaches, DPD explicitly takes into account the interactions of solvent and polymer. We find that the translocation time for unforced translocation follows a scaling τNβ with β2.24 in good agreement with the prediction β=1+2ν that has been derived by considering hydrodynamics and memory effects within the chain. For bad-solvent conditions β2, i.e., a diffusive scaling arises as a consequence of the reduced polymer relaxation time. Biased translocation between a good and a bad-solvent reservoir (tuned via the repulsion between solvent and polymer) yields a preferential translocation toward the good solvent with β1.2. This observation is consistent with the recent theoretical prediction β=3ν/(1+ν) for driven translocation. When varying the solvent quality by imposing attractive monomer-monomer interactions (such as in Langevin approaches), an artificial translocation toward the bad-solvent side emerges. Using attractive monomer-monomer interactions to mimic a bad solvent hence does not capture the essential physics of the translocation process.

1.
A.
Köhler
and
E.
Hurt
,
Nat. Rev. Mol. Cell Biol.
8
,
761
(
2007
).
2.
T. A.
Rapoport
,
Nature (London)
450
,
663
(
2007
).
3.
P.
de Gennes
,
Polymers in Confined Environments
,
Advances in Polymer Science
Vol.
138
(
Springer
,
New York
,
1999
), pp.
91
105
.
4.
A.
Meller
,
J. Phys.: Condens. Matter
15
,
R581
(
2003
).
5.
6.
M.
Muthukumar
,
Annu. Rev. Biophys. Biomol. Struct.
36
,
435
(
2007
).
7.
8.
T.
Ambjörnsson
and
R.
Metzler
,
Phys. Biol.
1
,
77
(
2004
).
9.
J.
Chuang
,
Y.
Kantor
, and
M.
Kardar
,
Phys. Rev. E
65
,
011802
(
2001
).
10.
K.
Luo
,
T.
Ala-Nissila
, and
S. -C.
Ying
,
J. Chem. Phys.
124
,
034714
(
2006
).
11.
I.
Huopaniemi
,
K.
Luo
,
T.
Ala-Nissila
, and
S. -C.
Ying
,
J. Chem. Phys.
125
,
124901
(
2006
).
12.
D.
Panja
,
G. T.
Barkema
, and
R. C.
Ball
,
J. Phys.: Condens. Matter
19
,
432202
(
2007
).
13.
K.
Luo
,
S.
Ollila
,
I.
Huopaniemi
,
T.
Ala-Nissila
,
P.
Pomorski
,
M.
Karttunen
,
S. -C.
Ying
, and
A.
Bhattacharya
,
Phys. Rev. E
78
,
050901
(
2008
).
14.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
,
International Series of Monographs on Physics
Vol.
73
(
Oxford University Press
,
USA
,
1986
).
15.
D.
Panja
and
G.
Barkema
,
J. Chem. Phys.
132
,
014902
(
2010
).
16.
M. G.
Gauthier
and
G. W.
Slater
,
Eur. Phys. J. E
25
,
17
(
2008
).
17.
D. S.
Wei
,
W.
Yang
,
X. G.
Jin
, and
Q.
Liao
,
J. Chem. Phys.
126
,
204901
(
2007
).
18.
H.
Vocks
,
D.
Panja
,
G.
Barkema
, and
R.
Ball
,
J. Phys.: Condens. Matter
20
,
095224
(
2008
).
19.
W. H.
Jiang
,
J. H.
Huang
,
Y. M.
Wang
, and
M.
Laradji
,
J. Chem. Phys.
126
,
044901
(
2007
).
20.
P. J.
Hoogerbrugge
and
J. M. V. A.
Koelman
,
Europhys. Lett.
19
,
155
(
1992
).
21.
P.
Español
and
P.
Warren
,
Europhys. Lett.
30
,
191
(
1995
).
22.
R. D.
Groot
and
P. B.
Warren
,
J. Chem. Phys.
107
,
4423
(
1997
).
23.
K.
Luo
,
T.
Ala-Nissila
,
S.
Ying
, and
A.
Bhattacharya
,
Phys. Rev. Lett.
99
,
148102
(
2007
).
24.
K.
Luo
,
T.
Ala-Nissila
,
S.
Ying
, and
A.
Bhattacharya
,
Phys. Rev. Lett.
100
,
058101
(
2008
).
25.
P.
Nikunen
,
M.
Karttunen
, and
I.
Vattulainen
,
Comput. Phys. Commun.
153
,
407
(
2003
).
26.
J. L. A.
Dubbeldam
,
A.
Milchev
,
V. G.
Rostiashvili
, and
T. A.
Vilgis
,
EPL
79
,
18002
(
2007
).
27.
J. L. A.
Dubbeldam
,
A.
Milchev
,
V. G.
Rostiashvili
, and
T. A.
Vilgis
,
J. Phys.: Condens. Matter
21
,
098001
(
2009
).
28.
D.
Panja
,
G. T.
Barkema
, and
R. C.
Ball
,
J. Phys.: Condens. Matter
21
,
098002
(
2009
).
29.
M.
Muthukumar
,
J. Chem. Phys.
111
,
10371
(
1999
).
30.
K.
Luo
,
T.
Ala-Nissila
,
S. -C.
Ying
, and
R.
Metzler
,
EPL
88
,
68006
(
2009
).
You do not currently have access to this content.