Using a recently implemented technique for the calculation of the adiabatic connection (AC) of density functional theory (DFT) based on Lieb maximization with respect to the external potential, the AC is studied for atoms and molecules containing up to ten electrons: the helium isoelectronic series, the hydrogen molecule, the beryllium isoelectronic series, the neon atom, and the water molecule. The calculation of AC curves by Lieb maximization at various levels of electronic-structure theory is discussed. For each system, the AC curve is calculated using Hartree–Fock (HF) theory, second-order Møller–Plesset (MP2) theory, coupled-cluster singles-and-doubles (CCSD) theory, and coupled-cluster singles-doubles-perturbative-triples [CCSD(T)] theory, expanding the molecular orbitals and the effective external potential in large Gaussian basis sets. The HF AC curve includes a small correlation-energy contribution in the context of DFT, arising from orbital relaxation as the electron-electron interaction is switched on under the constraint that the wave function is always a single determinant. The MP2 and CCSD AC curves recover the bulk of the dynamical correlation energy and their shapes can be understood in terms of a simple energy model constructed from a consideration of the doubles-energy expression at different interaction strengths. Differentiation of this energy expression with respect to the interaction strength leads to a simple two-parameter doubles model (AC-D) for the AC integrand (and hence the correlation energy of DFT) as a function of the interaction strength. The structure of the triples-energy contribution is considered in a similar fashion, leading to a quadratic model for the triples correction to the AC curve (AC-T). From a consideration of the structure of a two-level configuration-interaction (CI) energy expression of the hydrogen molecule, a simple two-parameter CI model (AC-CI) is proposed to account for the effects of static correlation on the AC. When parametrized in terms of the same input data, the AC-CI model offers improved performance over the corresponding AC-D model, which is shown to be the lowest-order contribution to the AC-CI model. The utility of the accurately calculated AC curves for the analysis of standard density functionals is demonstrated for the BLYP exchange-correlation functional and the interaction-strength-interpolation (ISI) model AC integrand. From the results of this analysis, we investigate the performance of our proposed two-parameter AC-D and AC-CI models when a simple density functional for the AC at infinite interaction strength is employed in place of information at the fully interacting point. The resulting two-parameter correlation functionals offer a qualitatively correct behavior of the AC integrand with much improved accuracy over previous attempts. The AC integrands in the present work are recommended as a basis for further work, generating functionals that avoid spurious error cancellations between exchange and correlation energies and give good accuracy for the range of densities and types of correlation contained in the systems studied here.

1.
J.
Harris
and
R. O.
Jones
,
J. Phys. F: Met. Phys.
4
,
1170
(
1974
).
2.
D. C.
Langreth
and
J. P.
Perdew
,
Solid State Commun.
17
,
1425
(
1975
).
3.
O.
Gunnarsson
and
B. I.
Lundqvist
,
Phys. Rev. B
13
,
4274
(
1976
).
4.
O.
Gunnarsson
and
B. I.
Lundqvist
,
Phys. Rev. B
15
,
6006
(
1977
).
5.
D. C.
Langreth
and
J. P.
Perdew
,
Phys. Rev. B
15
,
2884
(
1977
).
6.
M.
Ernzerhof
,
Chem. Phys. Lett.
263
,
499
(
1996
).
7.
M.
Ernzerhof
,
J. P.
Perdew
, and
K.
Burke
,
Int. J. Quantum Chem.
64
,
285
(
1997
).
8.
M.
Fuchs
,
Y.
Niquet
,
X.
Gonze
, and
K.
Burke
,
J. Chem. Phys.
122
,
094116
(
2005
).
9.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
,
J. Chem. Phys.
124
,
091102
(
2006
).
10.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
J. Chem. Phys.
127
,
034101
(
2007
).
11.
K.
Burke
,
M.
Ernzerhof
, and
J. P.
Perdew
,
Chem. Phys. Lett.
265
,
115
(
1997
).
12.
M.
Seidl
,
J. P.
Perdew
, and
S.
Kurth
,
Phys. Rev. A
62
,
012502
(
2000
).
13.
M.
Seidl
,
Int. J. Quantum Chem.
91
,
145
(
2002
).
14.
D. P.
Joubert
and
G. P.
Srivastava
,
J. Chem. Phys.
109
,
5212
(
1998
).
15.
F.
Colonna
and
A.
Savin
,
J. Chem. Phys.
110
,
2828
(
1999
).
16.
D.
Frydel
,
W. M.
Terilla
, and
K.
Burke
,
J. Chem. Phys.
112
,
5292
(
2000
).
17.
A.
Savin
,
F.
Colonna
, and
M.
Allavena
,
J. Chem. Phys.
115
,
6827
(
2001
).
18.
R.
Pollet
,
F.
Colonna
,
T.
Leininger
,
H.
Stoll
,
H. -J.
Werner
, and
A.
Savin
,
Int. J. Quantum Chem.
91
,
84
(
2002
).
19.
M. J. G.
Peach
,
A. M.
Teale
, and
D. J.
Tozer
,
J. Chem. Phys.
126
,
244104
(
2007
).
20.
M. J. G.
Peach
,
A. M.
Miller
,
A. M.
Teale
, and
D. J.
Tozer
,
J. Chem. Phys.
129
,
064105
(
2008
).
21.
W.
Yang
,
J. Chem. Phys.
109
,
10107
(
1998
).
22.
A. M.
Teale
,
S.
Coriani
, and
T.
Helgaker
, “
Range-dependent adiabatic connections
,”
AIP Conf. Proc.
(to be published).
23.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
24.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
25.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
26.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
27.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
28.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
29.
J.
Perdew
,
M.
Emzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
30.
M.
Seidl
,
J. P.
Perdew
, and
M.
Levy
,
Phys. Rev. A
59
,
51
(
1999
).
31.
M.
Seidl
,
J. P.
Perdew
, and
S.
Kurth
,
Phys. Rev. Lett.
84
,
5070
(
2000
).
32.
Q.
Wu
and
W.
Yang
,
J. Chem. Phys.
118
,
2498
(
2003
).
33.
A. M.
Teale
,
S.
Coriani
, and
T.
Helgaker
,
J. Chem. Phys.
130
,
104111
(
2009
).
34.
E.
Lieb
,
Int. J. Quantum Chem.
24
,
243
(
1983
).
35.
W.
Yang
and
Q.
Wu
,
Phys. Rev. Lett.
89
,
143002
(
2002
).
36.
E.
Fermi
and
E.
Amaldi
,
Mem. Accad. Italia
6
,
117
(
1934
), reproduced in
E.
Fermi
and
E.
Amaldi
, “
Collected Papers (Note e Memorie)
,” loc. cit, as art No. 82. For further information reprint is available at http://www.archive.org/stream/collected papersn007155mbp#page/n19/mode/2up.
37.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
38.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
39.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
100
,
2975
(
1994
).
40.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
103
,
4572
(
1995
).
41.
DALTON, a molecular electronic structure program, release 2.0,
2005
, see http://www.kjemi.uio.no/software/dalton/dalton.html.
42.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Modern Electronic-Structure Theory
(
Wiley
,
New York
,
2000
).
43.
T.
Helgaker
and
P.
Jørgensen
,
Theor. Chim. Acta
75
,
111
(
1989
).
44.
T.
Helgaker
and
P.
Jørgensen
, in
Methods in Computational Molecular Physics
, edited by
S.
Wilson
and
G. H. F.
Diercksen
(
Plenum
,
New York
,
1992
), p.
353
.
45.
A.
Görling
and
M.
Levy
,
Phys. Rev. B
47
,
13105
(
1993
).
46.
A.
Görling
and
M.
Levy
,
Phys. Rev. A
50
,
196
(
1994
).
47.
A.
Görling
and
M.
Ernzerhof
,
Phys. Rev. A
51
,
4501
(
1995
).
48.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
49.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
50.
MATHEMATICA, Version 7.0.0, Wolfram Research, Inc., Champaign, Illinois,
2009
.
51.
J. P.
Perdew
,
E. R.
McMullen
, and
A.
Zunger
,
Phys. Rev. A
23
,
2785
(
1981
).
52.
W.
Yang
, in
Density Matrices and Density-Functionals
, edited by
R.
Erdahl
and
V. H.
Smith
, Jr.
(
Reidel
,
Dordrecht, Holland
,
1987
), p.
499
.
53.
M.
Levy
and
J. P.
Perdew
, in
Single-Particle Density in Physics and Chemistry
, edited by
N. H.
March
and
B. M.
Deb
(
Academic
,
New York
,
1987
), pp.
54
55
.
54.
M.
Levy
and
J.
Perdew
,
Phys. Rev. A
32
,
2010
(
1985
).
55.
J. M.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
56.
P.
Gori-Giorgi
,
G.
Vignale
, and
M.
Seidl
,
J. Chem. Theory Comput.
5
,
743
(
2009
).
57.
J. P.
Perdew
,
S.
Kurth
,
A.
Zupan
, and
P.
Blaha
,
Phys. Rev. Lett.
82
,
2544
(
1999
).
You do not currently have access to this content.