Cooperative interactions in the hydration of dimethyl ether (DME) relative to its purely hydrophobic analog, propane, are analyzed by expressing the free energy of hydration in terms of an “inner-shell” contribution from water molecular packing and chemical association, and an “outer-shell” contribution described by the mean binding energy of the solute to the solution and fluctuations in this binding energy. We find that nonadditive, cooperative interactions associated with strong correlations in the binding energy fluctuations of the methyl groups and ether oxygen play a dominant role in the hydration of DME relative to propane. The electrostatic nature of these interactions is revealed in a multi-Gaussian analysis of hydration substates, which shows that the formation of favorable ether oxygen-water hydrogen bonds is correlated with less favorable methyl group-water interactions, and vice versa. We conclude that the group additive distinction between the hydrophobic hydration of the DME methyl groups and hydrophilic hydration of the ether oxygen is lost in the context of these cooperative interactions. Our results also suggest that the binding energy fluctuations of constituent hydrophobic/hydrophilic groups are more sensitive than local water density fluctuations for characterizing the hydration of heterogeneous interfaces.

1.
3.
C.
Tanford
,
The Hydrophobic Effect: Formation of Micelles and Biological Membranes
(
Wiley
,
New York
,
1980
).
4.
N.
Giovambattista
,
C. F.
Lopez
,
P. J.
Rossky
, and
P. G.
Debenedetti
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
2274
(
2008
).
5.
P.
Liu
,
X.
Huang
,
R.
Zhou
, and
B. J.
Berne
,
Nature (London)
437
,
159
(
2005
).
6.
A. P.
Willard
and
D.
Chandler
,
Faraday Discuss.
141
,
209
(
2009
).
7.
S.
Sarupria
and
S.
Garde
,
Phys. Rev. Lett.
103
,
037803
(
2009
).
8.
R.
Godawat
,
S. N.
Jamadagni
, and
S.
Garde
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
15119
(
2009
).
9.
M. H.
Priya
,
J. K.
Shah
,
D.
Asthagiri
, and
M. E.
Paulaitis
,
Biophys. J.
95
,
2219
(
2008
).
10.
Y.
He
,
Y.
Chang
,
J. C.
Hower
,
J.
Zheng
,
S.
Chen
, and
S.
Jiang
,
Phys. Chem. Chem. Phys.
10
,
5539
(
2008
).
11.
L.
Hua
,
R.
Zangi
, and
B. J.
Berne
,
J. Phys. Chem.
110
,
3704
(
2006
).
12.
V. A.
Makarov
,
B. K.
Andrews
,
P. E.
Smith
, and
B. M.
Pettitt
,
Biophys. J.
79
,
2966
(
2000
).
13.
T.
Koishi
,
K.
Yasuoka
,
S.
Fujikawa
,
T.
Ebisuzaki
, and
X. C.
Zeng
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
8435
(
2009
).
14.
N.
Giovambattista
,
P. G.
Debenedetti
, and
P. J.
Rossky
,
J. Phys. Chem. C
111
,
1323
(
2007
).
15.
A.
Paliwal
,
D.
Asthagiri
,
D.
Abras
,
A. M.
Lenhoff
, and
M. E.
Paulaitis
,
Biophys. J.
89
,
1564
(
2005
).
16.
L.
Hua
,
R.
Zangi
, and
B. J.
Berne
,
J. Phys. Chem.
113
,
5244
(
2009
).
17.
T.
Koishi
,
S.
Yoo
,
K.
Yasuoka
,
X. C.
Zeng
,
T.
Narumi
,
R.
Susukita
,
A.
Kawai
,
H.
Furusawa
,
A.
Suenaga
,
N.
Okimoto
,
N.
Futatsugi
, and
T.
Ebisuzaki
,
Phys. Rev. Lett.
93
,
185701
(
2004
).
18.
J. C.
Hower
,
Y.
He
,
T.
Bernards
, and
S.
Jiang
,
J. Chem. Phys.
125
,
214704
(
2006
).
19.
L. R.
Pratt
and
S. B.
Rempe
, in
Simulation and Theory of Electrostatic Interactions in Solution. Computational Chemistry, Biophysics, and Aqueous Solutions
, edited by
L. R.
Pratt
and
G.
Hummer
(
American Institute of Physics
,
Melville, NY
,
1999
) [
AIP Conference Proceedings
492
,
172
(
1999
)].
20.
M. E.
Paulaitis
and
L. R.
Pratt
,
Adv. Protein Chem.
62
,
283
(
2002
).
21.
T. L.
Beck
,
M. E.
Paulaitis
, and
L. R.
Pratt
,
The Potential Distribution Theorem and Models of Molecular Solutions
(
Cambridge University Press
,
Cambridge
,
2006
).
22.
L. R.
Pratt
and
D.
Asthagiri
, “
Potential distribution methods and free energy models of molecular solutions
,” in
Free Energy Calculations. Theory and Applications in Chemistry and Biology
(
Springer-Verlag
,
Berlin
,
2007
), Chap. 9, pp.
323
351
.
23.
D.
Asthagiri
,
P. D.
Dixit
,
S.
Merchant
,
M. E.
Paulaitis
,
L. R.
Pratt
,
S. R.
Rempe
, and
S.
Varma
,
Chem. Phys. Lett.
485
,
1
(
2010
).
24.
D.
Asthagiri
,
H. S.
Ashbaugh
,
A.
Priyatinski
,
M. E.
Paulaitis
, and
L. R.
Pratt
,
J. Am. Chem. Soc.
129
,
10133
(
2007
).
25.
D.
Asthagiri
,
S.
Merchant
, and
L. R.
Pratt
,
J. Chem. Phys.
128
,
244512
(
2008
).
26.
A.
Paliwal
,
D.
Asthagiri
,
L. R.
Pratt
,
H. S.
Ashbaugh
, and
M. E.
Paulaitis
,
J. Chem. Phys.
124
,
224502
(
2006
).
27.
J. K.
Shah
,
D.
Asthagiri
,
L. R.
Pratt
, and
M. E.
Paulaitis
,
J. Chem. Phys.
127
,
144508
(
2007
).
28.
H. S.
Ashbaugh
and
M. E.
Paulaitis
,
Ind. Eng. Chem. Res.
45
,
5531
(
2006
).
30.
R. L.
Baldwin
,
Proc. Natl. Acad. Sci. U.S.A.
83
,
8069
(
1986
).
31.
S.
Garde
,
G.
Hummer
,
A. E.
García
,
M. E.
Paulaitis
, and
L. R.
Pratt
,
Phys. Rev. Lett.
77
,
4966
(
1996
).
32.
S.
Saeki
,
N.
Kuwahara
,
M.
Nakata
, and
M.
Kaneko
,
Polymer
17
,
685
(
1976
).
33.
R.
Kjellander
and
E.
Florin
,
J. Chem. Soc., Faraday Trans. 1
77
,
2053
(
1981
).
34.
Y. C.
Bae
,
S. M.
Lambert
,
D. S.
Soane
, and
J. M.
Prausnitz
,
Macromolecules
24
,
4403
(
1991
).
35.
K. L.
Prime
and
G. M.
Whitesides
,
Science
252
,
1164
(
1991
).
36.
K. L.
Prime
and
G. M.
Whitesides
,
J. Am. Chem. Soc.
115
,
10714
(
1993
).
37.
M. J.
Stevens
and
G. S.
Grest
,
BioInterphases
3
,
FC13
(
2008
).
38.
M.
Morra
,
J. Biomater. Sci., Polym. Ed.
11
,
547
(
2000
).
39.
P.
Harder
,
M.
Grunze
,
R.
Dahint
,
G. M.
Whitesides
, and
P. E.
Laibinis
,
J. Phys. Chem. B
102
,
426
(
1998
).
40.
R. G.
Chapman
,
E.
Ostuni
,
S.
Takayama
,
R. E.
Holmlin
,
L.
Yan
, and
G. M.
Whitesides
,
J. Am. Chem. Soc.
122
,
8303
(
2000
).
41.
R. S.
Kane
,
P.
Deschatelets
, and
G. M.
Whitesides
,
Langmuir
19
,
2388
(
2003
).
42.
D. J.
Vanderah
,
H.
La
,
J.
Naff
,
V.
Silin
, and
K. A.
Rubinson
,
J. Am. Chem. Soc.
126
,
13639
(
2004
).
43.
S.
Merchant
and
D.
Asthagiri
,
J. Chem. Phys.
130
,
195102
(
2009
).
44.
S.
Chempath
,
L. R.
Pratt
, and
M. E.
Paulaitis
,
J. Chem. Phys.
130
,
054113
(
2009
).
45.
H. S.
Ashbaugh
and
L. R.
Pratt
,
Rev. Mod. Phys.
78
,
159
(
2006
).
46.
S.
Chempath
and
L. R.
Pratt
,
J. Phys. Chem. B
113
,
4147
(
2009
).
47.
G.
Hummer
,
L. R.
Pratt
, and
A. E.
García
,
J. Am. Chem. Soc.
119
,
8523
(
1997
).
48.
L. R.
Pratt
and
R. A.
LaViolette
,
Mol. Phys.
94
,
909
(
1998
).
49.
G.
Hummer
,
L. R.
Pratt
, and
A. E.
García
,
J. Phys. Chem. A
102
,
7885
(
1998
).
50.
L.
Kale
,
R.
Skeel
,
M.
Bhandarkar
,
R.
Brunner
,
N. G. N.
Krawetz
,
J.
Phillips
,
A.
Shinozaki
,
K.
Varadarajan
, and
K.
Schulten
,
J. Comput. Phys.
151
,
283
(
1999
).
51.
J. M.
Briggs
,
T.
Matsui
, and
W. L.
Jorgensen
,
J. Comput. Chem.
11
,
958
(
1990
).
52.
W. L.
Jorgensen
,
J. M.
Briggs
, and
M. L.
Contreras
,
J. Phys. Chem.
94
,
1683
(
1990
).
53.
J. P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
54.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
55.
H. S.
Ashbaugh
and
M. E.
Paulaitis
,
J. Phys. Chem.
100
,
1900
(
1996
).
56.
J.
Hine
and
P. K.
Mookerjee
,
J. Org. Chem.
40
,
289
(
1975
).
57.
G.
Hummer
,
S.
Garde
,
A. E.
García
,
A.
Pohorille
, and
L. R.
Pratt
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
8951
(
1996
).
58.
S.
Cabani
,
P.
Gianni
,
V.
Mollica
, and
L.
Lepori
,
J. Solution Chem.
10
,
563
(
1981
).
60.
H. S.
Ashbaugh
,
L. R.
Pratt
,
M. E.
Paulaitis
,
J.
Clohecy
, and
T. L.
Beck
,
J. Am. Chem. Soc.
127
,
2808
(
2005
).
61.
G.
Hummer
,
L. R.
Pratt
, and
A. E.
García
,
J. Phys. Chem.
102
,
7885
(
1997
).
62.
P. D.
Dixit
,
S.
Merchant
, and
D.
Asthagiri
,
Biophys. J.
96
,
2138
(
2009
).
63.
G.
Hummer
,
J. Am. Chem. Soc.
121
,
6299
(
1999
).
64.
A. K.
Soper
and
A.
Luzar
,
J. Phys. Chem.
100
,
1357
(
1996
).
You do not currently have access to this content.