We have studied the interaction of CH4 with Al2 and Al3 neutral and charged clusters in the two lowest lying spin states using density functional theory. These calculations, via extended search, are used to determine the stable positions of H and CH3 near the cluster, and the transition state to break the HCH3 bond. In all cases, stable methyl-aluminum-hydrides are possible. The H desorption is studied by means of vibration analysis and application of transition state theory. A common observed trend is that, in breaking the HCH3 bond, the interacting H atom is attached to the “surface” of the clusters attracting some negative charge of 0.2e. The charge transfer is illustrated using the corresponding orbitals near the transition state in conjunction with the computed Mulliken population analysis. Thermal vibrations, generally, do not enhance the reaction. In all exothermic cases, the binding energy toward CH3+HAlncharge increases with increasing charge of the original Aln(q=1,0,1) cluster. Although Al lacks occupied d-orbitals, the small Al clusters reduce the (free methane) CH3H dissociation barrier except for Al3(q=1,0). The relevant reactions in desorption require 400700°C.

1.
O.
Ingólfsson
,
H.
Takeo
, and
S.
Nonose
,
J. Chem. Phys.
110
,
4382
(
1999
).
2.
M. D.
Deshpande
,
D. G.
Kanhere
,
I.
Vasiliev
, and
R. M.
Martin
,
Phys. Rev. B
68
,
035428
(
2003
).
3.
A.
Groß
,
J. Comput. Theor. Nanosci.
5
,
894
(
2008
).
4.
Z. P.
Liu
and
P.
Hu
,
J. Am. Chem. Soc.
125
,
1958
(
2003
).
5.
G.
Zhang
,
S.
Li
, and
Y.
Jiang
,
Organometallics
22
,
3820
(
2003
).
6.
P. R.
Kemper
,
J.
Bushnell
,
M. T.
Bowers
, and
G. I.
Gellene
,
J. Phys. Chem. A
102
,
8590
(
1998
).
7.
B. D.
Leskiw
and
A. W.
Castleman
,
Chem. Phys. Lett.
316
,
31
(
2000
).
8.
L.
Hanley
,
S. A.
Ruatta
, and
S. L.
Anderson
,
J. Chem. Phys.
87
,
260
(
1987
).
9.
J.
Sun
,
W. C.
Lu
,
H.
Wang
,
Z. -S.
Li
, and
C. -C.
Sun
,
J. Phys. Chem. A
110
,
2729
(
2006
).
10.
R. L.
Hettich
,
J. Am. Chem. Soc.
111
,
8582
(
1989
).
11.
H.
Schwarz
,
Int. J. Mass Spectrom.
237
,
75
(
2004
).
12.
C.
Mosch
,
C.
Koukounas
,
N.
Bacalis
,
A.
Metropoulos
,
A.
Gross
, and
A.
Mavridis
,
J. Phys. Chem. C
112
,
6924
(
2008
).
13.
J.
Behler
,
B.
Delley
,
S.
Lorenz
,
K.
Reuter
, and
M.
Scheffler
,
Phys. Rev. Lett.
94
,
036104
(
2005
).
14.
J.
Behler
,
B.
Delley
,
K.
Reuter
, and
M.
Scheffler
,
Phys. Rev. B
75
,
115409
(
2007
).
15.
C.
Carbogno
,
J.
Behler
,
A.
Groß
, and
K.
Reuter
,
Phys. Rev. Lett.
101
,
096104
(
2008
).
16.
C.
Carbogno
,
J.
Behler
,
K.
Reuter
, and
A.
Groß
,
Phys. Rev. B
81
,
035410
(
2010
).
17.
L.
Österlund
,
I.
Zorić
, and
B.
Kasemo
,
Phys. Rev. B
55
,
15452
(
1997
).
18.
R.
Burgert
,
H.
Schnöckel
,
A.
Grubisic
,
X.
Li
,
S. T.
Stokes
,
K. H.
Bowen
,
G. F.
Ganteför
,
B.
Kiran
, and
P.
Jena
,
Science
319
,
438
(
2008
).
19.
T.
Zhou
,
A.
Liu
,
Y.
Mo
, and
H.
Zhang
,
J. Phys. Chem. A
104
,
4505
(
2000
).
20.
H.
Öström
,
L.
Triguero
,
M.
Nyberg
,
H.
Ogasawara
,
L. G. M.
Pettersson
, and
A.
Nilsson
,
Phys. Rev. Lett.
91
,
046102
(
2003
).
21.
J.
Greeley
and
M.
Mavrikakis
,
J. Am. Chem. Soc.
126
,
3910
(
2004
).
22.
S.
Sakong
and
A.
Groß
,
J. Catal.
231
,
420
(
2005
).
23.
S.
Sakong
and
A.
Groß
,
J. Phys. Chem. A
111
,
8814
(
2007
).
24.
T.
Mitsui
,
E.
Hill
,
R.
Curtis
, and
E.
Ganz
,
Phys. Rev. B
59
,
8123
(
1999
).
25.
T.
Nakajima
,
T.
Tanaka
, and
K.
Yamashita
,
Surf. Sci.
444
,
99
(
2000
).
26.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
27.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
28.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
1989
).
29.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 03, Revision D.01, Gaussian, Inc., Wallingford CT,
2004
.
30.
R.
Ditchfield
,
W. J.
Hehre
, and
J. A.
Pople
,
J. Chem. Phys.
54
,
724
(
1971
);
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
);
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chim. Acta
28
,
213
(
1973
);
P. C.
Hariharan
and
J. A.
Pople
,
Mol. Phys.
27
,
209
(
1974
);
M. S.
Gordon
,
Chem. Phys. Lett.
76
,
163
(
1980
);
M. M.
Francl
,
W. J.
Pietro
,
W. J.
Hehre
,
J. S.
Binkley
,
D. J.
DeFrees
,
J. A.
Pople
, and
M. S.
Gordon
,
J. Chem. Phys.
77
,
3654
(
1982
);
G. A.
Petersson
,
A.
Bennett
,
T. G.
Tensfeldt
,
M. A.
Al-Laham
,
W. A.
Shirley
, and
J.
Mantzaris
,
J. Chem. Phys.
89
,
2193
(
1988
);
R. C.
Binning
,Jr.
and
L. A.
Curtiss
,
J. Comput. Chem.
11
,
1206
(
1990
);
G. A.
Petersson
and
M. A.
Al-Laham
,
J. Chem. Phys.
94
,
6081
(
1991
);
J. -P.
Blaudeau
,
M. P.
McGrath
,
L. A.
Curtiss
, and
L.
Radom
,
J. Chem. Phys.
107
,
5016
(
1997
);
V. A.
Rassolov
,
J. A.
Pople
,
M. A.
Ratner
, and
T. L.
Windus
,
J. Chem. Phys.
109
,
1223
(
1998
);
V. A.
Rassolov
,
M. A.
Ratner
,
J. A.
Pople
,
P. C.
Redfern
, and
L. A.
Curtiss
,
J. Comput. Chem.
22
,
976
(
2001
).
31.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
);
B.
Miehlich
,
A.
Savin
,
H.
Stoll
, and
H.
Preuss
,
Chem. Phys. Lett.
157
,
200
(
1989
);
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
32.
A. D.
McLean
and
G. S.
Chandler
,
J. Chem. Phys.
72
,
5639
(
1980
).
33.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
34.
M.
Head-Gordon
,
J. Phys. Chem.
100
,
13213
(
1996
).
35.
J. L.
Whitten
and
H.
Yang
,
Surf. Sci. Rep.
24
,
55
(
1996
).
37.
C.
Peng
,
P. Y.
Ayala
,
H. B.
Schlegel
, and
M. J.
Frisch
,
J. Comput. Chem.
17
,
49
(
1996
);
C.
Peng
and
H. B.
Schlegel
,
Isr. J. Chem.
33
,
449
(
1994
).
38.
39.
B. K.
Rao
and
P.
Jena
,
J. Chem. Phys.
111
,
1890
(
1999
).
40.
C. -G.
Zhan
,
F.
Zheng
, and
D. A.
Dixon
,
J. Am. Chem. Soc.
124
,
14795
(
2002
).
41.
S. H.
Yang
,
D. A.
Drabold
,
J. B.
Adams
, and
A.
Sachdev
,
Phys. Rev. B
47
,
1567
(
1993
).
42.
J. C.
Polanyi
and
W. H.
Wong
,
J. Chem. Phys.
51
,
1439
(
1969
).
43.
A.
Groß
and
M.
Scheffler
,
Chem. Phys. Lett.
256
,
417
(
1996
).
44.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
251
(
1990
).
You do not currently have access to this content.