The transition wave numbers from selected rovibrational levels of the EFΣ1g+(v=0) state to selected np Rydberg states of ortho- and para-D2 located below the adiabatic ionization threshold have been measured at a precision better than 103cm1. Adding these wave numbers to the previously determined transition wave numbers from the XΣ1g+(v=0,N=0,1) states to the EFΣ1g+(v=0,N=0,1) states of D2 and to the binding energies of the Rydberg states calculated by multichannel quantum defect theory, the ionization energies of ortho- and para-D2 are determined to be 124745.39407(58)cm1 and 124715.00377(75)cm1, respectively. After re-evaluation of the dissociation energy of D2+ and using the known ionization energy of D, the dissociation energy of D2 is determined to be 36748.36286(68)cm1. This result is more precise than previous experimental results by more than one order of magnitude and is in excellent agreement with the most recent theoretical value 36748.3633(9)cm1 [K. Piszczatowski, G. Łach, M. Przybytek et al., J. Chem. Theory Comput.5, 3039 (2009)]. The ortho-para separation of D2, i.e., the energy difference between the N=0 and N=1 rotational levels of the XΣ1g+(v=0) ground state, has been determined to be 59.78130(95)cm1.

1.
H.
Primas
and
U.
Müller-Herold
,
Elementare Quantenchemie
(
Teubner Studienbücher
,
Stuttgart
,
1984
). Section 5.3 (“Fakten und Zahlen: Die Geschichte des Wasserstoff-Moleküls”) gives a complete account of the early efforts invested in the quantitative comparison of experimental and theoretical values of the dissociation energy of H2 and explains in detail how studies of molecular hydrogen contributed to establish the validity of molecular quantum mechanics and to understand chemical bonds physically.
2.
K.
Piszczatowski
,
G.
Łach
,
M.
Przybytek
,
J.
Komasa
,
K.
Pachucki
, and
B.
Jeziorski
,
J. Chem. Theory Comput.
5
,
3039
(
2009
).
3.
J.
Liu
,
E. J.
Salumbides
,
U.
Hollenstein
,
J. C. J.
Koelemeij
,
K. S. E.
Eikema
,
W.
Ubachs
, and
F.
Merkt
,
J. Chem. Phys.
130
,
174306
(
2009
).
4.
Y. P.
Zhang
,
C. H.
Cheng
,
J. T.
Kim
,
J.
Stanojevic
, and
E. E.
Eyler
,
Phys. Rev. Lett.
92
,
203003
(
2004
).
5.
S.
Hannemann
,
E. J.
Salumbides
,
S.
Witte
,
R. T.
Zinkstok
,
E. -J.
van Duijn
,
K. S. E.
Eikema
, and
W.
Ubachs
,
Phys. Rev. A
74
,
062514
(
2006
).
6.
H. A.
Cruse
,
Ch.
Jungen
, and
F.
Merkt
,
Phys. Rev. A
77
,
042502
(
2008
).
7.
P. J.
Mohr
,
B. N.
Taylor
, and
D. B.
Newell
,
Rev. Mod. Phys.
80
,
633
(
2008
).
8.
R. E.
Moss
,
J. Chem. Soc., Faraday Trans.
89
,
3851
(
1993
).
9.
R.
Seiler
,
Th.
Paul
,
M.
Andrist
, and
F.
Merkt
,
Rev. Sci. Instrum.
76
,
103103
(
2005
).
10.
Th. A.
Paul
and
F.
Merkt
,
J. Phys. B
38
,
4145
(
2005
).
11.
H.
Knöckel
,
B.
Bodermann
, and
E.
Tiemann
,
Eur. Phys. J. D
28
,
199
(
2004
).
12.
Th. A.
Paul
,
J.
Liu
, and
F.
Merkt
,
Phys. Rev. A
79
,
022505
(
2009
).
13.
I.
Reinhard
,
M.
Gabrysch
,
B. F.
von Weikersthal
,
K.
Jungmann
, and
G.
zu Putlitz
,
Appl. Phys. B: Lasers Opt.
63
,
467
(
1996
).
14.
A.
Osterwalder
,
A.
Wüest
,
F.
Merkt
, and
Ch.
Jungen
,
J. Chem. Phys.
121
,
11810
(
2004
).
15.
See: http://physics.nist.gov/hdel (The energy levels of hydrogen and deuterium given in this database include all corrections detailed in Ref. 7. The fundamental constants used in the calculations are taken from CODATA
2002
).
16.
A. R. W.
McKellar
and
T.
Oka
,
Can. J. Phys.
56
,
1315
(
1978
).
17.
D.
Sprecher
,
J.
Liu
, and
F.
Merkt
(unpublished).
18.
Th. A.
Paul
,
H. A.
Cruse
,
H. J.
Wörner
, and
F.
Merkt
,
Mol. Phys.
105
,
871
(
2007
).
19.
M.
Schäfer
and
F.
Merkt
,
Phys. Rev. A
74
,
062506
(
2006
).
20.
A.
Osterwalder
and
F.
Merkt
,
Phys. Rev. Lett.
82
,
1831
(
1999
).
21.
G.
Herzberg
and
Ch.
Jungen
,
J. Mol. Spectrosc.
41
,
425
(
1972
).
22.
M. H.
Howells
and
R. A.
Kennedy
,
J. Chem. Soc., Faraday Trans.
86
,
3495
(
1990
).
23.
R.
Bukowski
,
B.
Jeziorski
,
R.
Moszyński
, and
W.
Kołos
,
Int. J. Quantum Chem.
42
,
287
(
1992
).
26.
V. I.
Korobov
,
Phys. Rev. A
74
,
052506
(
2006
).
27.
V. I.
Korobov
,
Phys. Rev. A
77
,
022509
(
2008
).
28.
S.
Takezawa
and
Y.
Tanaka
,
J. Mol. Spectrosc.
54
,
379
(
1975
).
29.
Ch.
Jungen
,
I.
Dabrowski
,
G.
Herzberg
, and
M.
Vervloet
,
J. Chem. Phys.
93
,
2289
(
1990
).
30.
W.
Kołos
,
K.
Szalewicz
, and
H. J.
Monkhorst
,
J. Chem. Phys.
84
,
3278
(
1986
).
31.
L.
Wolniewicz
and
T.
Orlikowski
,
Mol. Phys.
74
,
103
(
1991
).
32.
J. M.
Gilligan
and
E. E.
Eyler
,
Phys. Rev. A
46
,
3676
(
1992
).
33.
Ch.
Jungen
,
I.
Dabrowski
,
G.
Herzberg
, and
M.
Vervloet
,
J. Mol. Spectrosc.
153
,
11
(
1992
).
34.
D.
Shiner
,
J. M.
Gilligan
,
B. M.
Cook
, and
W.
Lichten
,
Phys. Rev. A
47
,
4042
(
1993
).
35.
W.
Kołos
and
J.
Rychlewski
,
J. Chem. Phys.
98
,
3960
(
1993
).
36.
L.
Wolniewicz
,
J. Chem. Phys.
99
,
1851
(
1993
).
37.
W.
Kołos
,
J. Chem. Phys.
101
,
1330
(
1994
).
38.
L.
Wolniewicz
,
J. Chem. Phys.
103
,
1792
(
1995
).
You do not currently have access to this content.