We present a simple, and physically motivated, coarse-grained model of a lipid bilayer, suited for micron scale computer simulations. Each 25nm2 patch of bilayer is represented by a spherical particle. Mimicking forces of hydrophobic association, multiparticle interactions suppress the exposure of each sphere’s equator to its implicit solvent surroundings. The requirement of high equatorial density stabilizes two-dimensional structures without necessitating crystalline order, allowing us to match both the elasticity and fluidity of natural lipid membranes. We illustrate the model’s versatility and realism by characterizing a membrane’s response to a prodding nanorod.

1.
G.
Brannigan
,
L. C.-L.
Lin
, and
F. L. H.
Brown
,
Eur. Biophys. J.
35
,
104
(
2006
).
2.
O.
Edholm
, in
Computational Modeling of Membrane Bilayers
, edited by
S. E.
Feller
(
Academic
,
New York
,
2008
).
3.
J. C.
Shelley
,
M. Y.
Shelley
,
R. C.
Reeder
,
S.
Bandyopadhyay
, and
M. L.
Klein
,
J. Phys. Chem. B
105
,
4464
(
2001
).
4.
S. J.
Marrink
,
A. H.
de Vries
, and
A. E.
Mark
,
J. Phys. Chem. B
108
,
750
(
2004
).
5.
G. S.
Ayton
and
G. A.
Voth
,
J. Phys. Chem. B
113
,
4413
(
2009
).
6.
G. S.
Ayton
,
E.
Lyman
, and
G. A.
Voth
,
Faraday Discuss.
144
,
347
(
2010
).
7.
I. R.
Cooke
,
K.
Kremer
, and
M.
Deserno
,
Phys. Rev. E
72
,
011506
(
2005
).
8.
G.
Brannigan
,
P. F.
Philips
, and
F. L. H.
Brown
,
Phys. Rev. E
72
,
011915
(
2005
).
9.
M.
Venturoli
,
M. M.
Sperotto
,
M.
Kranenburg
, and
B.
Smit
,
Phys. Rep.
437
,
1
(
2006
).
10.
J. -M.
Drouffe
,
A. C.
Maggs
, and
S.
Leibler
,
Science
254
,
1353
(
1991
).
11.
G.
Gompper
and
D. M.
Kroll
,
J. Phys.: Condens. Matter
12
,
A29
(
2000
).
12.
G.
Ayton
and
G. A.
Voth
,
Biophys. J.
83
,
3357
(
2002
).
13.
H.
Noguchi
and
G.
Gompper
,
Phys. Rev. E
73
,
021903
(
2006
).
14.
G. S.
Ayton
,
S.
Izvekov
,
W. G.
Noid
, and
G. A.
Voth
,
Curr. Top. Membr.
60
,
181
(
2008
).
16.
W.
Helfrich
,
Z. Naturforsch. C
28
,
693
(
1973
).
17.
S. A.
Safran
,
Statistical Thermodynamics of Surfaces, Interfaces and Membranes
(
Addison-Wesley
,
Reading, MA
,
1994
).
18.
G. S.
Ayton
,
P. D.
Blood
, and
G. A.
Voth
,
Biophys. J.
92
,
3595
(
2007
).
19.
G. S.
Ayton
,
E.
Lyman
,
V.
Krishna
,
R. D.
Swenson
,
C.
Mim
,
V. M.
Unger
, and
G. A.
Voth
,
Biophys. J.
97
,
1616
(
2009
).
20.
G.
Gompper
and
D. M.
Kroll
,
J. Phys. (France)
6
,
1305
(
1996
).
21.
B.
Alberts
,
A.
Johnson
,
J.
Lewis
,
M.
Raff
,
K.
Roberts
, and
P.
Walter
,
Molecular Biology of the Cell
, 4th ed. (
Garland Science
,
New York
,
2002
).
22.
D.
Chandler
,
Nature (London)
437
,
640
(
2005
).
23.
The elastic behavior of the model membrane is dominated by entropic effects, yielding a nearly temperature-independent reduced bending rigidity κ/kBT. Translation and rotation of finite membrane patches, on the other hand, proceed by displacements of individual particles, which are suppressed at low temperatures. To accelerate the self-assembly process the trajectory shown in Fig. 1 was generated at a higher temperature ϵ=25kBT.
24.
W.
Rawicz
,
K. C.
Olbrich
,
T.
McIntosh
,
D.
Needham
, and
E.
Evans
,
Biophys. J.
79
,
328
(
2000
).
25.
J. -B.
Fournier
and
C.
Barbetta
,
Phys. Rev. Lett.
100
,
078103
(
2008
).
26.
To compute the fluctuation spectrum of a membrane that spans the simulation box in the xy-plane we define the height function h(x,y)=i=1NziΘ(xix)Θ(yiy)/i=1NΘ(xix)Θ(yiy) where Θ(x)=1 if |x|Δ/2 and zero otherwise. Evaluating this function for points (x,y) that form a square grid of resolution Δ and taking the two-dimensional discrete Fourier transform, we obtain the Fourier amplitude ĥq. This procedure generates a systematic bias at large wavevectors (Ref. 33). Taking this bias into account does not change the value of κ for our model.
27.
A. P.
Liu
,
D. L.
Richmond
,
L.
Maibaum
,
S.
Pronk
,
P. L.
Geissler
, and
D. A.
Fletcher
,
Nat. Phys.
4
,
789
(
2008
).
28.
X.
Chen
,
A.
Kis
,
A.
Zettl
, and
C. R.
Bertozzi
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
8218
(
2007
).
29.
I.
Derényi
,
F.
Jülicher
, and
J.
Prost
,
Phys. Rev. Lett.
88
,
238101
(
2002
).
30.
T. R.
Powers
,
G.
Huber
, and
R. E.
Goldstein
,
Phys. Rev. E
65
,
041901
(
2002
).
31.
E.
Atilgan
,
D.
Wirtz
, and
S. X.
Sun
,
Biophys. J.
90
,
65
(
2006
).
32.
G.
Koster
,
A.
Cacciuto
,
I.
Derenyi
,
D.
Frenkel
, and
M.
Dogterom
,
Phys. Rev. Lett.
94
,
068101
(
2005
).
33.
I. R.
Cooke
and
M.
Deserno
,
J. Chem. Phys.
123
,
224710
(
2005
).
34.
K. A.
Brakke
,
Exp. Math.
1
,
141
(
1992
).
35.
K. A.
Brakke
, Surface Evolver 2.30c. http://www.susqu.edu/brakke/evolver.
36.
Continuum calculations were performed by finding the ground state energy of a membrane under the Helfrich energy functional, given by the surface integral SdS(σ+2κH2), where H is the local mean curvature. Calculation were performed using the Surface Evolver software package (Refs. 34 and 35), which employs discretized approximations for both the membrane shape and the operators in the energy functional. To mimic the geometry of our particle simulation as closely as possible, we constrained the membrane height to zero on a square frame of side length 60d, and set the Cartesian coordinates of a single vertex to (0,0,l). The force f(l) was computed as the derivative of the ground state energy with respect to l.
You do not currently have access to this content.