We analyze a model for polymerization at catalytic sites distributed within parallel linear pores of a mesoporous material. Polymerization occurs primarily by reaction of monomers diffusing into the pores with the ends of polymers near the pore openings. Monomers and polymers undergo single-file diffusion within the pores. Model behavior, including the polymer length distribution, is determined by kinetic Monte Carlo simulation of a suitable atomistic-level lattice model. While the polymers remain within the pore, their length distribution during growth can be described qualitatively by a Markovian rate equation treatment. However, once they become partially extruded, the distribution is shown to exhibit non-Markovian scaling behavior. This feature is attributed to the long-tail in the “return-time distribution” for the protruding end of the partially extruded polymer to return to the pore, such return being necessary for further reaction and growth. The detailed form of the scaled length distribution is elucidated by application of continuous-time random walk theory.

1.
K.
Tajima
and
T.
Aida
,
Nanostructured Catalysts
(
Plenum
,
New York
,
2003
).
2.
V. S.-Y.
Lin
,
D. R.
Radu
,
M. -K.
Han
,
W.
Deng
,
S.
Kuroki
,
B. H.
Shanks
, and
M.
Pruski
,
J. Am. Chem. Soc.
124
,
9040
(
2002
).
3.
S.
Huh
,
J. W.
Wiench
,
J. -C.
Yoo
,
M.
Pruski
, and
V. -S.-Y.
Lin
,
Chem. Mater.
15
,
4247
(
2003
).
4.
5.
D. S.
Sholl
and
K.
Fichthorn
,
Phys. Rev. Lett.
79
,
3569
(
1997
).
6.
D.
Dubbeldam
,
S.
Calero
,
T. L. M.
Maesen
, and
B.
Smit
,
Phys. Rev. Lett.
90
,
245901
(
2003
).
7.
D. J.
Liu
,
H. -T.
Chen
,
V. S.-Y.
Lin
, and
J. W.
Evans
,
Phys. Rev. E
80
,
011801
(
2009
).
8.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell UP
,
Ithaca
,
1979
).
9.
A.
Baumgartner
and
M.
Muthukumar
,
Adv. Chem. Phys.
94
,
625
(
1996
).
10.
H.
Mori
,
Prog. Theor. Phys
33
,
423
(
1965
).
11.
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
(
Oxford
,
New York
,
2001
).
12.
13.
R.
Balescu
,
Equilibrium and Nonequilibrium Statistical Mechanics
(
Wiley
,
New York
,
1975
).
14.
S. V.
Nedea
,
A. P. J.
Jansen
,
J. J.
Lukkien
, and
P. A. J.
Hilbers
,
Phys. Rev. E
65
,
066701
(
2002
);
S. V.
Nedea
,
A. P. J.
Jansen
,
J. J.
Lukkien
, and
P. A. J.
Hilbers
,
Phys. Rev. E
66
,
066705
(
2002
).
15.
This time unit corresponds to the physical time for the root-mean-square displacement of a diffusing monomer to equal the length of the monomer.
16.
K.
Kang
and
S.
Redner
,
Phys. Rev. Lett.
52
,
955
(
1984
).
17.
K.
Kang
and
S.
Redner
,
Phys. Rev. A
30
,
2833
(
1984
).
18.
R. M.
Ziff
,
E.
Gulari
, and
Y.
Barshad
,
Phys. Rev. Lett.
56
,
2553
(
1986
).
19.
K. A.
Fichthorn
and
W. H.
Weinberg
,
J. Chem. Phys.
95
,
1090
(
1991
).
20.
J. W.
Evans
,
D. -J.
Liu
, and
M.
Tammaro
,
Chaos
12
,
131
(
2002
).
21.
On Growth and Form
, edited by
H. E.
Stanley
and
N.
Ostrowsky
(
Martinus Nijhoff
,
Dordrecht
,
1986
).
22.
E. W.
Montroll
and
G. H.
Weiss
,
J. Math. Phys.
6
,
167
(
1965
).
23.
B. D.
Hughes
,
Random Walks and Random Environments
(
Oxford Science
,
Oxford
,
1995
), Vol.
1
.
24.
Due to the recurrence of 1D random walks (Ref. 23), the end of the polymer is far more likely to return to the same catalyst site after nhLc hops, rather than to reach an adjacent catalyst site after nh(Lc)2 hops. The mean number of hops to reach any catalyst site satisfies nhLc.
25.
The residence time of the end of the long polymer of length L at the catalytic site, τpoly=1/h(L) far exceeds the characteristic time, τm=1/hm=1, for monomer hopping. Thus, even for small monomer densities, there is usually sufficient time for monomers to reach the catalytic site and react before the polymer hops. As a result, typically one has that Prx1.
26.
D. -J.
Liu
and
J. W.
Evans
,
Phys. Rev. B
66
,
165407
(
2002
) (See the Appendix.).
27.
The loss term in d/dtLav due to extrusion has the form PexLavh(Lav)/nhL=Lav noting that the length of the polymer is reduced from LLav to LO(1) upon extrusion.
28.
Using the notation in the  Appendix, these Markovian equations have the form d/dtNL=m>0pm[Pret(Lm)Rret(Lm)NLmPet(L)Rret(L)NL]Pex(L)Rex(L)NL, for L>2, and d/dtN2=L>2Pex(L)Rex(L)NLPret(2)Rret(2)N2. The equations also involve rates for return, Rret(L), and extrusion, Rex(L), of a polymer of length L.
29.
G. H.
Weiss
and
R. J.
Rubin
,
Adv. Chem. Phys.
52
,
363
(
1983
).
30.
S.
Redner
,
A Guide to First-Passage Processes
(
Cambridge UP
,
Cambridge
,
2001
).
31.
From Ref. 30, the behavior of Fn also follows from that of the “survival probability” of not returning after n steps, Snn1/2 and the relation Sn=1mnFn.
32.
The generating function for nFn satisfies zF(z)21/2(1z)1/2 as z1. Application of the discrete Tauberian Theorem (Ref. 23) implies that nFn21/2n1/2/Γ(1/2), for even n.
33.
The conditional mean return time sampling only those walks which return in the first n steps diverges like (2n/π)1/2 (Ref. 23) consistent with stated large n-behavior of Fn.
34.
D.
Bedeaux
,
K.
Lakatos-Lindenberg
, and
K. E.
Shuler
,
J. Math. Phys.
12
,
2116
(
1971
).
35.
M.
Ferraro
and
L.
Zaninetti
,
Phys. Rev. E
64
,
056107
(
2001
). This analysis appears to start from an invalid equation, although correctly recovering Eq. (8).
36.
The analysis is also presented in Ref. 30, but the result is missing a factor of 2.
37.
This result follows from a conventional CTRW analysis (Ref. 23).
38.
This result follows using the strong Tauberian theorem (Ref. 23) to relate t Fret(t)t1/2/(2π)1/2 to its Laplace transform d/dsF̃ret(s).
39.
This relationship between ÑL(s) and NL(t) follows from consideration of the Laplace transform of the Gaussian solution to the standard continuum diffusion equation.
You do not currently have access to this content.