We propose an efficient path integral hybrid Monte Carlo (PIHMC) method based on fourth-order Trotter expansion. Here, the second-order effective force is employed to generate short trial trajectories to avoid computationally expensive Hessian matrix, while the final acceptance is judged based on fourth-order effective potential. The computational performance of our PIHMC scheme is compared with that of conventional PIHMC and PIMD methods based on second- and fourth-order Trotter expansions. Our method is applied to on-the-fly ab initio PIHMC calculation of fluoride ion-water complexes, F(H2O) and F(D2O), at ambient temperature, particularly focusing on the geometrical isotope effect.

1.
D.
Marx
and
M.
Parrinello
,
J. Chem. Phys.
104
,
4077
(
1996
).
2.
M.
Shiga
,
M.
Tachikawa
, and
S.
Miura
,
J. Chem. Phys.
115
,
9149
(
2001
).
3.
I.
Štich
,
D.
Marx
,
M.
Parrinello
, and
K.
Terakura
,
Phys. Rev. Lett.
78
,
3669
(
1997
).
4.
M. E.
Tuckerman
,
D.
Marx
,
M. L.
Klein
, and
M.
Parrinello
,
Science
275
,
817
(
1997
).
5.
S.
Miura
,
M. E.
Tuckerman
, and
M. L.
Klein
,
J. Chem. Phys.
109
,
5290
(
1998
).
6.
M. E.
Tuckerman
and
D.
Marx
,
Phys. Rev. Lett.
86
,
4946
(
2001
).
7.
S.
Raugei
and
M. L.
Klein
,
J. Am. Chem. Soc.
125
,
8992
(
2003
).
8.
M.
Tachikawa
and
M.
Shiga
,
J. Chem. Phys.
121
,
5985
(
2004
).
9.
Y.
Ohta
,
K.
Ohta
, and
K.
Kinugawa
,
J. Chem. Phys.
121
,
10991
(
2004
).
10.
M.
Tachikawa
and
M.
Shiga
,
J. Am. Chem. Soc.
127
,
11908
(
2005
).
11.
A.
Hayashi
,
M.
Shiga
, and
M.
Tachikawa
,
J. Chem. Phys.
125
,
204310
(
2006
).
12.
H.
Ishibashi
,
A.
Hayashi
,
M.
Shiga
, and
M.
Tachikawa
,
ChemPhysChem
9
,
383
(
2008
).
13.
D.
Chandler
and
P. G.
Wolynes
,
J. Chem. Phys.
74
,
4078
(
1981
).
14.
M.
Takahashi
and
M.
Imada
,
J. Phys. Soc. Jpn.
53
,
3765
(
1984
).
15.
K.
Suzuki
,
M.
Shiga
, and
M.
Tachikawa
,
J. Chem. Phys.
129
,
144310
(
2008
).
16.
M.
Meot-Ner
,
Chem. Rev. (Washington, D.C.)
105
,
213
(
2005
).
17.
W. H.
Robertson
and
M. A.
Johnson
,
Annu. Rev. Phys. Chem.
54
,
173
(
2003
).
18.
P.
Ayotte
,
J. A.
Kelly
,
S. B.
Nielsen
, and
M. A.
Johnson
,
Chem. Phys. Lett.
316
,
455
(
2000
).
19.
E. G.
Diken
,
J-. W.
Shin
,
E. A.
Price
, and
M. A.
Johnson
,
Chem. Phys. Lett.
387
,
17
(
2004
).
20.
J. R.
Roscioli
,
E. G.
Diken
,
M. A.
Johnson
,
S.
Horvath
, and
A. B.
McCoy
,
J. Phys. Chem. A
110
,
4943
(
2006
).
21.
S.
Horvath
,
A. B.
McCoy
,
J. R.
Roscioli
, and
M. A.
Johnson
,
J. Phys. Chem. A
112
,
12337
(
2008
).
22.
S. S.
Xantheas
and
T. H.
Dunning
, Jr.
,
J. Phys. Chem.
98
,
13489
(
1994
).
23.
J.
Baik
,
J.
Kim
,
D.
Majumdar
, and
K. S.
Kim
,
J. Chem. Phys.
110
,
9116
(
1999
).
24.
G. M.
Chaban
,
S. S.
Xantheas
, and
R. B.
Gerber
,
J. Phys. Chem. A
107
,
4952
(
2003
).
25.
X. P.
Li
and
J. Q.
Broughton
,
J. Chem. Phys.
86
,
5094
(
1987
).
26.
S.
Duane
,
A. D.
Kennedy
,
B. J.
Pendleton
, and
D.
Roweth
,
Phys. Lett. B
195
,
216
(
1987
).
27.
B.
Mehlig
,
D. W.
Heermann
, and
B. M.
Forrest
,
Phys. Rev. B
45
,
679
(
1992
).
28.
M. E.
Tuckerman
,
B. J.
Berne
,
G. J.
Martyna
, and
M. L.
Klein
,
J. Chem. Phys.
99
,
2796
(
1993
).
29.
S.
Miura
,
J. Chem. Phys.
126
,
114308
(
2007
).
30.
A.
Nakayama
,
T.
Taketsugu
, and
M.
Shiga
,
Chem. Lett.
38
,
976
(
2009
).
31.
L. D.
Gelb
,
J. Chem. Phys.
118
,
7747
(
2003
).
32.
M. E.
Tuckerman
,
B. J.
Berne
, and
G. J.
Martyna
,
J. Chem. Phys.
97
,
1990
(
1992
).
33.
G. J.
Martyna
,
M. E.
Tuckerman
,
D. J.
Tobias
, and
M. L.
Klein
,
Mol. Phys.
87
,
1117
(
1996
).
34.
R. W.
Hall
and
B. J.
Berne
,
J. Chem. Phys.
81
,
3641
(
1984
).
35.
J.
Cao
and
G. J.
Martyna
,
J. Chem. Phys.
104
,
2028
(
1996
).
36.
H.
Flyvbjerg
and
H. G.
Petersen
,
J. Chem. Phys.
91
,
461
(
1989
).
37.
M. E.
Tuckerman
,
D.
Marx
,
M. L.
Klein
, and
M.
Parrinello
,
J. Chem. Phys.
104
,
5579
(
1996
).
38.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
39.
A. R.
Ubbelohde
and
K. J.
Gallagher
,
J. Acta Crystallogr.
8
,
71
(
1955
).
You do not currently have access to this content.