We propose an efficient path integral hybrid Monte Carlo (PIHMC) method based on fourth-order Trotter expansion. Here, the second-order effective force is employed to generate short trial trajectories to avoid computationally expensive Hessian matrix, while the final acceptance is judged based on fourth-order effective potential. The computational performance of our PIHMC scheme is compared with that of conventional PIHMC and PIMD methods based on second- and fourth-order Trotter expansions. Our method is applied to on-the-fly ab initio PIHMC calculation of fluoride ion-water complexes, and , at ambient temperature, particularly focusing on the geometrical isotope effect.
REFERENCES
1.
D.
Marx
and M.
Parrinello
, J. Chem. Phys.
104
, 4077
(1996
).2.
M.
Shiga
, M.
Tachikawa
, and S.
Miura
, J. Chem. Phys.
115
, 9149
(2001
).3.
I.
Štich
, D.
Marx
, M.
Parrinello
, and K.
Terakura
, Phys. Rev. Lett.
78
, 3669
(1997
).4.
M. E.
Tuckerman
, D.
Marx
, M. L.
Klein
, and M.
Parrinello
, Science
275
, 817
(1997
).5.
S.
Miura
, M. E.
Tuckerman
, and M. L.
Klein
, J. Chem. Phys.
109
, 5290
(1998
).6.
M. E.
Tuckerman
and D.
Marx
, Phys. Rev. Lett.
86
, 4946
(2001
).7.
S.
Raugei
and M. L.
Klein
, J. Am. Chem. Soc.
125
, 8992
(2003
).8.
M.
Tachikawa
and M.
Shiga
, J. Chem. Phys.
121
, 5985
(2004
).9.
Y.
Ohta
, K.
Ohta
, and K.
Kinugawa
, J. Chem. Phys.
121
, 10991
(2004
).10.
M.
Tachikawa
and M.
Shiga
, J. Am. Chem. Soc.
127
, 11908
(2005
).11.
A.
Hayashi
, M.
Shiga
, and M.
Tachikawa
, J. Chem. Phys.
125
, 204310
(2006
).12.
H.
Ishibashi
, A.
Hayashi
, M.
Shiga
, and M.
Tachikawa
, ChemPhysChem
9
, 383
(2008
).13.
D.
Chandler
and P. G.
Wolynes
, J. Chem. Phys.
74
, 4078
(1981
).14.
M.
Takahashi
and M.
Imada
, J. Phys. Soc. Jpn.
53
, 3765
(1984
).15.
K.
Suzuki
, M.
Shiga
, and M.
Tachikawa
, J. Chem. Phys.
129
, 144310
(2008
).16.
M.
Meot-Ner
, Chem. Rev. (Washington, D.C.)
105
, 213
(2005
).17.
W. H.
Robertson
and M. A.
Johnson
, Annu. Rev. Phys. Chem.
54
, 173
(2003
).18.
P.
Ayotte
, J. A.
Kelly
, S. B.
Nielsen
, and M. A.
Johnson
, Chem. Phys. Lett.
316
, 455
(2000
).19.
E. G.
Diken
, J-. W.
Shin
, E. A.
Price
, and M. A.
Johnson
, Chem. Phys. Lett.
387
, 17
(2004
).20.
J. R.
Roscioli
, E. G.
Diken
, M. A.
Johnson
, S.
Horvath
, and A. B.
McCoy
, J. Phys. Chem. A
110
, 4943
(2006
).21.
S.
Horvath
, A. B.
McCoy
, J. R.
Roscioli
, and M. A.
Johnson
, J. Phys. Chem. A
112
, 12337
(2008
).22.
S. S.
Xantheas
and T. H.
Dunning
, Jr., J. Phys. Chem.
98
, 13489
(1994
).23.
J.
Baik
, J.
Kim
, D.
Majumdar
, and K. S.
Kim
, J. Chem. Phys.
110
, 9116
(1999
).24.
G. M.
Chaban
, S. S.
Xantheas
, and R. B.
Gerber
, J. Phys. Chem. A
107
, 4952
(2003
).25.
X. P.
Li
and J. Q.
Broughton
, J. Chem. Phys.
86
, 5094
(1987
).26.
S.
Duane
, A. D.
Kennedy
, B. J.
Pendleton
, and D.
Roweth
, Phys. Lett. B
195
, 216
(1987
).27.
B.
Mehlig
, D. W.
Heermann
, and B. M.
Forrest
, Phys. Rev. B
45
, 679
(1992
).28.
M. E.
Tuckerman
, B. J.
Berne
, G. J.
Martyna
, and M. L.
Klein
, J. Chem. Phys.
99
, 2796
(1993
).29.
S.
Miura
, J. Chem. Phys.
126
, 114308
(2007
).30.
A.
Nakayama
, T.
Taketsugu
, and M.
Shiga
, Chem. Lett.
38
, 976
(2009
).31.
L. D.
Gelb
, J. Chem. Phys.
118
, 7747
(2003
).32.
M. E.
Tuckerman
, B. J.
Berne
, and G. J.
Martyna
, J. Chem. Phys.
97
, 1990
(1992
).33.
G. J.
Martyna
, M. E.
Tuckerman
, D. J.
Tobias
, and M. L.
Klein
, Mol. Phys.
87
, 1117
(1996
).34.
R. W.
Hall
and B. J.
Berne
, J. Chem. Phys.
81
, 3641
(1984
).35.
J.
Cao
and G. J.
Martyna
, J. Chem. Phys.
104
, 2028
(1996
).36.
H.
Flyvbjerg
and H. G.
Petersen
, J. Chem. Phys.
91
, 461
(1989
).37.
M. E.
Tuckerman
, D.
Marx
, M. L.
Klein
, and M.
Parrinello
, J. Chem. Phys.
104
, 5579
(1996
).38.
R.
Ahlrichs
, M.
Bär
, M.
Häser
, H.
Horn
, and C.
Kölmel
, Chem. Phys. Lett.
162
, 165
(1989
).39.
A. R.
Ubbelohde
and K. J.
Gallagher
, J. Acta Crystallogr.
8
, 71
(1955
).© 2010 American Institute of Physics.
2010
American Institute of Physics
You do not currently have access to this content.