The S22 test set of interaction energies for small model complexes [Phys. Chem. Chem. Phys.8, 1985 (2006)] has been very valuable for benchmarking new and existing methods for noncovalent interactions. However, the basis sets utilized to compute the CCSD(T) interaction energies for some of the dimers are insufficient to obtain converged results. Here we consistently extrapolate all CCSD(T)/complete basis set (CBS) interaction energies using larger basis sets for the CCSD(T) component of the computation. The revised values, which we designate S22A, represent the most accurate results to date for this set of dimers. The new values appear to be within a few hundredths of 1kcalmol1 of the true CCSD(T)/CBS limit at the given geometries, but the former S22 values are off by as much as 0.6kcalmol1 compared to the revised values. Because some of the most promising methods for noncovalent interactions are already achieving this level of agreement (or better) compared to the S22 data, more accurate benchmark values would clearly be helpful. The MP2, SCS-MP2, SCS-CCSD, SCS(MI)-MP2, and B2PLYP-D methods have been tested against the more accurate benchmark set. The B2PLYP-D method outperforms all other methods tested here, with a mean average deviation of only 0.12kcalmol1. However, the consistent, slight underestimation of the interaction energies computed by the SCS-CCSD method (an overall mean absolute deviation and mean deviation of 0.24 and 0.23kcalmol1, respectively) suggests that the SCS-CCSD method has the potential to become even more accurate with a reoptimization of its parameters for noncovalent interactions.

1.
M. O.
Sinnokrot
,
E. F.
Valeev
, and
C. D.
Sherrill
,
J. Am. Chem. Soc.
124
,
10887
(
2002
).
2.
S.
Tsuzuki
,
K.
Honda
,
T.
Uchimaru
,
M.
Mikami
, and
K.
Tanabe
,
J. Am. Chem. Soc.
124
,
104
(
2002
).
3.
M. O.
Sinnokrot
and
C. D.
Sherrill
,
J. Phys. Chem. A
108
,
10200
(
2004
).
4.
M.
Pitoňák
,
K. E.
Riley
,
P.
Neogrády
, and
P.
Hobza
,
ChemPhysChem
9
,
1636
(
2008
).
5.
E. C.
Lee
,
D.
Kim
,
P.
Jurečka
,
P.
Tarakeshwar
,
P.
Hobza
, and
K. S.
Kim
,
J. Phys. Chem. A
111
,
3446
(
2007
).
6.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
7.
T. J.
Lee
and
G. E.
Scuseria
, in
Quantum Mechanical Electronic Structure Calculations With Chemical Accuracy
, edited by
S. R.
Langhoff
(
Kluwer Academic
,
Dordrecht
,
1995
), pp.
47
108
.
8.
S.
Grimme
,
J. Chem. Phys.
118
,
9095
(
2003
).
9.
J.
Grant Hill
,
J. A.
Platts
, and
H.-J.
Werner
,
Phys. Chem. Chem. Phys.
8
,
4072
(
2006
).
10.
T.
Takatani
and
C. D.
Sherrill
,
Phys. Chem. Chem. Phys.
9
,
6106
(
2007
).
11.
T.
Takatani
,
E. G.
Hohenstein
, and
C. D.
Sherrill
,
J. Chem. Phys.
128
,
124111
(
2008
).
12.
E. G.
Hohenstein
,
S. T.
Chill
, and
C. D.
Sherrill
,
J. Chem. Theory Comput.
4
,
1996
(
2008
).
13.
R.
Podeszwa
,
R.
Bukowski
, and
K.
Szalewicz
,
J. Phys. Chem. A
110
,
10345
(
2006
).
14.
C. D.
Sherrill
,
T.
Takatani
, and
E. G.
Hohenstein
,
J. Phys. Chem. A
113
,
10146
(
2009
).
15.
J.
Šponer
,
P.
Jurečka
,
I.
Marchan
,
F. J.
Juque
,
M.
Orozco
, and
P.
Hobza
,
Chem.-Eur. J.
12
,
2854
(
2006
).
16.
P.
Jurečka
,
J.
Šponer
,
J.
Černý
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
(
2006
).
17.
P.
Jurečka
,
J.
Cerny
,
P.
Hobza
, and
D. R.
Salahub
,
J. Comput. Chem.
28
,
555
(
2007
).
18.
P.
Hobza
and
J.
Šponer
,
J. Am. Chem. Soc.
124
,
11802
(
2002
).
19.
J. G.
Hill
and
J. A.
Platts
,
J. Chem. Theory Comput.
3
,
80
(
2007
).
20.
K. E.
Riley
and
P.
Hobza
,
J. Phys. Chem. A
111
,
8257
(
2007
).
21.
J. P.
McNamara
and
I. H.
Hillier
,
Phys. Chem. Chem. Phys.
9
,
2362
(
2007
).
22.
C.
Morgado
,
M. A.
Vincent
,
I. H.
Hillier
, and
X.
Shan
,
Phys. Chem. Chem. Phys.
9
,
448
(
2007
).
23.
O.
Marchetti
and
H.
Werner
,
Phys. Chem. Chem. Phys.
10
,
3400
(
2008
).
24.
E.
Goll
,
T.
Leininger
,
F. R.
Manby
,
A.
Mitrushchenkov
,
H.
Werner
, and
H.
Stoll
,
Phys. Chem. Chem. Phys.
10
,
3353
(
2008
).
25.
T.
Benighaus
,
R. A.
DiStasio
,
R. C.
Lochan
,
J.
Chai
, and
M.
Head-Gordon
,
J. Phys. Chem. A
112
,
2702
(
2008
).
26.
T.
Sato
,
T.
Tsuneda
, and
K.
Hirao
,
J. Chem. Phys.
126
,
234114
(
2007
).
27.
O.
Marchetti
and
H. -J.
Werner
,
J. Phys. Chem. A
113
,
11580
(
2009
).
28.
T.
Schwabe
and
S.
Grimme
,
Phys. Chem. Chem. Phys.
9
,
3397
(
2007
).
29.
R. A.
Distasio
and
M.
Head-Gordon
,
Mol. Phys.
105
,
1073
(
2007
).
30.
M.
Pitoňák
,
P.
Neogrády
,
J.
Černý
,
S.
Grimme
, and
P.
Hobza
,
ChemPhysChem
10
,
282
(
2009
).
31.
M. O.
Sinnokrot
and
C. D.
Sherrill
,
J. Phys. Chem. A
110
,
10656
(
2006
).
32.
L. F.
Molnar
,
X.
He
,
B.
Wang
, and
K. M.
Merz
,
J. Chem. Phys.
131
,
065102
(
2009
).
33.
T.
Janowski
and
P.
Pulay
,
Chem. Phys. Lett.
447
,
27
(
2007
).
34.
M.
Pitoňák
,
T.
Janowski
,
P.
Neogrády
,
P.
Pulay
, and
P.
Hobza
,
J. Chem. Theory Comput.
5
,
1761
(
2009
).
35.
M.
Pitoňák
,
P.
Neogrády
,
J.
Řezáč
,
P.
Jurečka
,
M.
Urban
, and
P.
Hobza
,
J. Chem. Theory Comput.
4
,
1829
(
2008
).
36.
MOLPRO, a package of ab initio programs, version 2006.1,
H. -J.
Werner
,
P. J.
Knowles
,
R.
Lindh
 et al.
37.
E. J.
Bylaska
,
W. A.
de Jong
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
M.
Valiev
,
D.
Wang
,
E.
Apra
,
T. L.
Windus
,
J.
Hammond
,
P.
Nichols
,
S.
Hirata
,
M. T.
Hackler
,
Y.
Zhao
,
P.-D.
Fan
,
R. J.
Harrison
,
M.
Dupuis
,
D. M. A.
Smith
,
J.
Nieplocha
,
V.
Tipparaju
,
M.
Krishnan
,
Q.
Wu
,
T.
Van Voorhis
,
A. A.
Auer
,
M.
Nooijen
,
E.
Brown
,
G.
Cisneros
,
G. I.
Fann
,
H.
Fruchtl
,
J.
Garza
,
K.
Hirao
,
R.
Kendall
,
J. A.
Nichols
,
K.
Tsemekhman
,
K.
Wolinski
,
J.
Anchell
,
D.
Bernholdt
,
P.
Borowski
,
T.
Clark
,
D.
Clerc
,
H.
Dachsel
,
M.
Deegan
,
K.
Dyall
,
D.
Elwood
,
E.
Glendening
,
M.
Gotowski
,
A.
Hess
,
J.
Jaffee
,
B.
Johnson
J.
Ju
,
R.
Kobayashi
,
R.
Kutteh
,
Z.
Lin
,
R.
Littlefield
,
X.
Long
,
B.
Meng
,
T.
Nakajima
,
S.
Niu
,
L.
Pollack
,
M.
Rosing
,
G.
Sandrone
,
M.
Stave
,
H.
Taylor
,
G.
Thomas
,
J.
van Lenthe
,
A.
Wong
, and
Z.
Zhang
, NWCHEM, a computational chemistry package for parallel computers, version 5.1,
2007
, Pacific Northwest National Laboratory, Richland, Washington, 99352-0999, USA.
38.
R. A.
Kendall
,
E.
Apra
,
D. E.
Bernholdt
,
E. J.
Bylaska
,
M.
Dupuis
,
G. I.
Fann
,
R. J.
Harrison
,
J. L.
Ju
,
J. A.
Nichols
,
J.
Nieplocha
,
T. P.
Straatsma
,
T. L.
Windus
, and
A. T.
Wong
,
Comput. Phys. Commun.
128
,
260
(
2000
).
39.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
40.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
41.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
42.
A.
Halkier
,
W.
Klopper
,
T.
Helgaker
,
P.
Jørgensen
, and
P. R.
Taylor
,
J. Chem. Phys.
111
,
9157
(
1999
).
43.
See supplementary material at http://dx.doi.org/10.1063/1.3378024 for counterpoise-corrected and uncorrected MP2 interaction energies, ΔCCSD(T) corrections, and CCSD(T) interaction energies, and a comparison to additional literature data.

Supplementary Material

You do not currently have access to this content.