The primitive chain network (PCN) model successfully employed to simulate the rheology of entangled polymers is here tested versus less coarse-grained (lattice or atomistic) models for what concerns the structure of the network at equilibrium (i.e., in the absence of flow). By network structure, we mean the distributions of some relevant quantities such as subchain length in space or in monomer number. Indeed, lattice and atomistic simulations are obviously more accurate, but are also more difficult to use in nonequilibrium flow situations, especially for long entangled polymers. Conversely, the coarse-grained PCN model that deals more easily with rheology lacks, strictly speaking, a rigorous foundation. It is therefore important to verify whether or not the equilibrium structure of the network predicted by the PCN model is consistent with the results recently obtained by using lattice and atomistic simulations. In this work, we focus on single chain properties of the entangled network. Considering the significant differences in modeling the polymer molecules, the results here obtained appear encouraging, thus providing a more solid foundation to Brownian simulations based on the PCN model. Comparison with the existing theories also proves favorable.

1.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
New York
,
1986
).
2.
T. C. B.
McLeish
,
Adv. Phys.
51
,
1379
(
2002
).
3.
R.
Everaers
,
S. K.
Sukumaran
,
G. S.
Grest
,
C.
Svaneborg
,
A.
Sivasubramanian
, and
K.
Kremer
,
Science
303
,
823
(
2004
).
4.
S. K.
Sukumaran
,
G. S.
Grest
,
K.
Kremer
, and
R.
Everaers
,
J. Polym. Sci., Part B: Polym. Phys.
43
,
917
(
2005
).
5.
M.
Kroger
,
Comput. Phys. Commun.
168
,
209
(
2005
).
6.
K.
Foteinopoulou
,
N. C.
Karayiannis
,
V. G.
Mavrantzas
, and
M.
Kroger
,
Macromolecules
39
,
4207
(
2006
).
7.
C.
Tzoumanekas
and
D. N.
Theodorou
,
Macromolecules
39
,
4592
(
2006
).
8.
S.
Shanbhag
and
R. G.
Larson
,
Macromolecules
39
,
2413
(
2006
).
9.
C.
Tzoumanekas
and
D. N.
Theodorou
,
Curr. Opin. Solid State Mater. Sci.
10
,
61
(
2006
).
10.
K.
Kamio
,
K.
Moorthi
, and
D. N.
Theodorou
,
Macromolecules
40
,
710
(
2007
).
11.
T.
Spyriouni
,
C.
Tzoumanekas
,
D. N.
Theodorou
,
F.
Muller-Plathe
, and
G.
Milano
,
Macromolecules
40
,
3876
(
2007
).
12.
S.
Shanbhag
and
M.
Kroger
,
Macromolecules
40
,
2897
(
2007
).
13.
S. F.
Edwards
and
K. E.
Evans
,
J. Chem. Soc., Faraday Trans. 2
77
,
1913
(
1981
).
14.
P. G.
de Gennes
,
J. Phys. (France)
36
,
1199
(
1975
).
15.
E.
Helfand
and
D. S.
Pearson
,
J. Chem. Phys.
79
,
2054
(
1983
).
16.
J. D.
Schieber
,
J. Chem. Phys.
118
,
5162
(
2003
).
17.
J. D.
Schieber
,
J.
Neergaard
, and
S.
Gupta
,
J. Rheol.
47
,
213
(
2003
).
18.
19.
Y.
Masubuchi
,
J. I.
Takimoto
,
K.
Koyama
,
G.
Ianniruberto
,
G.
Marrucci
, and
F.
Greco
,
J. Chem. Phys.
115
,
4387
(
2001
).
20.
Y.
Masubuchi
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
J. Chem. Phys.
119
,
6925
(
2003
).
21.
Y.
Masubuchi
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
Modell. Simul. Mater. Sci. Eng.
12
,
S91
(
2004
).
22.
Y.
Masubuchi
,
G.
Lanniruberto
,
F.
Greco
, and
G.
Marrucci
,
J. Non-Newtonian Fluid Mech.
149
,
87
(
2008
).
23.
Y.
Masubuchi
,
H.
Watanabe
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
Macromolecules
41
,
8275
(
2008
).
24.
K.
Furuichi
,
C.
Nonomura
,
Y.
Masubuchi
,
H.
Watanabe
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
Rheol. Acta
47
,
591
(
2008
).
25.
Y.
Masubuchi
,
K.
Furuichi
,
K.
Horio
,
T.
Uneyama
,
H.
Watanabe
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
J. Chem. Phys.
131
,
114906
(
2009
).
26.
T.
Yaoita
,
T.
Isaki
,
Y.
Masubuchi
,
H.
Watanabe
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
J. Chem. Phys.
128
,
154901
(
2008
).
27.
Y.
Matsumiya
,
H.
Watanabe
, and
K.
Osaki
,
Macromolecules
33
,
499
(
2000
).
28.
R. G.
Larson
,
T.
Sridhar
,
L. G.
Leal
,
G. H.
McKinley
,
A. E.
Likhtman
, and
T. C. B.
McLeish
,
J. Rheol.
47
,
809
(
2003
).
You do not currently have access to this content.