The angle resolved intensity and velocity distributions of desorbing product N2 were measured under a steady-state N2O+CO reaction on Rh(110) by cross-correlation time-of-flight techniques. Three-dimensional intensity distribution of N2 has been constructed from the angle resolved intensity distributions in the planes along different crystal azimuths. N2 desorption has been found to split into two lobes sharply collimated along 50–63° off normal toward [001] and [001¯] directions, suggesting that N2O is decomposed through the transition state of N2O adsorbed with the molecular axis parallel to the [001] direction. From the velocity distribution analysis, each desorption lobe is found to consist of two components with different peak angles, ca. 50° and 74° off normal. In both lobe cases, desorption components have been interpreted by the model of two adsorption sites; N2O at on-top site emits N2 to 50° and that at bridge site emits to 74°.

1.
A. R.
Ravishankara
,
J. S.
Daniel
, and
R. W.
Portmann
,
Science
326
,
123
(
2009
).
2.
W. S.
Epling
,
L. E.
Campbell
,
A.
Yezerets
,
N. W.
Currier
, and
J. E.
Parks
,
Catal. Rev.
46
,
163
(
2004
);
G.
Centi
,
G. E.
Arena
, and
S.
Perathoner
,
J. Catal.
216
,
443
(
2003
).
3.
C. T.
Campbell
and
J. M.
White
,
Appl. Surf. Sci.
1
,
347
(
1978
).
4.
S. H.
Oh
,
G. B.
Fisher
,
J. E.
Carpenter
, and
D. W.
Goodman
,
J. Catal.
100
,
360
(
1986
).
5.
I.
Rzeznicka
,
Y. -S.
Ma
,
G.
Cao
, and
T.
Matsushima
,
J. Phys. Chem. B
108
,
14232
(
2004
).
6.
Y.
Ohno
,
K.
Kimura
,
M.
Bi
, and
T.
Matsushima
,
J. Chem. Phys.
110
,
8221
(
1999
).
7.
H.
Horino
,
I. I.
Rzeznicka
,
A.
Kokalj
,
I.
Kobal
,
A.
Hiratsuka
,
Y.
Ohno
, and
T.
Matsushima
,
J. Vac. Sci. Technol. A
20
,
1592
(
2002
).
8.
9.
T.
Matsushima
,
Prog. Surf. Sci.
82
,
435
(
2007
).
10.
T.
Matsushima
,
Surf. Sci.
603
,
1415
(
2009
).
11.
Y.
Ma
,
T.
Matsushima
,
K.
Shobatake
, and
A.
Kokalj
,
J. Chem. Phys.
124
,
144711
(
2006
).
12.
T.
Matsushima
,
Phys. Chem. Chem. Phys.
9
,
3031
(
2007
).
13.
M.
Ikai
,
N. M. H.
Janssen
,
B. E.
Nieuwenhuys
, and
Ken-ichi
Tanaka
,
J. Chem. Phys.
106
,
311
(
1997
).
14.
M.
Ikai
and
Ken-ichi
Tanaka
,
J. Chem. Phys.
110
,
7031
(
1999
).
15.
A. V.
Zeigarnik
,
Kinetics and Catalysis
44
,
233
(
2003
).
17.
J. C. L.
Cornish
and
N. R.
Avery
,
Surf. Sci.
235
,
209
(
1990
).
18.
P.
Väterlein
,
T.
Krause
,
M.
Bäßler
,
R.
Fink
,
E.
Umbach
,
J.
Taborski
,
V.
Wüstenhagen
, and
W.
Wurth
,
Phys. Rev. Lett.
76
,
4749
(
1996
).
19.
A. L.
Schwaner
,
W.
Mahmood
, and
J. M.
White
,
Surf. Sci.
351
,
228
(
1996
).
20.
Y.
Li
and
M.
Bowker
,
Surf. Sci.
348
,
67
(
1996
).
21.
K.
Imamura
,
H.
Horino
,
I.
Rzeznicka
,
I.
Kobal
,
A.
Kokalj
,
Y.
Ohno
,
B. E.
Nieuwenhuys
,
A.
Hiratsuka
, and
T.
Matsushima
,
Surf. Sci.
566–568
,
1076
(
2004
).
22.
H.
Horino
,
S.
Liu
,
A.
Hiratsuka
,
Y.
Ohno
, and
T.
Matsushima
,
Chem. Phys. Lett.
341
,
419
(
2001
).
23.
R.
Sau
and
J. B.
Hudson
,
J. Vac. Sci. Technol.
18
,
607
(
1981
).
24.
A.
Spitzer
and
H.
Luth
,
Phys. Rev. B
30
,
3098
(
1984
).
25.
D. A.
Hoffman
and
J. B.
Hudson
,
Surf. Sci.
180
,
77
(
1987
).
26.
C.
Kodama
,
H.
Orita
, and
H.
Hozoye
,
Appl. Surf. Sci.
121–122
,
579
(
1997
).
27.
E.
Umbach
and
D.
Menzel
,
Chem. Phys. Lett.
84
,
491
(
1981
).
28.
Y.
Kim
,
J. A.
Schreifels
, and
J. M.
White
,
Surf. Sci.
114
,
349
(
1982
).
29.
T. E.
Madey
,
N. R.
Avery
,
A. B.
Anton
,
B. H.
Toby
, and
W. H.
Weinberg
,
J. Vac. Sci. Technol. A
1
,
1220
(
1983
).
30.
K.
Imamura
and
T.
Matsushima
,
Catal. Lett.
97
,
197
(
2004
).
31.
T.
Matsushima
,
O.
Nakagoe
,
K.
Shobatake
, and
A.
Kokalj
,
J. Chem. Phys.
125
,
133402
(
2006
).
32.
Y. -S.
Ma
,
Song
Han
, and
T.
Matsushima
,
Langmuir
21
,
9529
(
2005
).
33.
I.
Kobal
,
A.
Kokalj
,
H.
Horino
,
Y.
Ohno
, and
T.
Matsushima
,
Trends Chem. Phys.
10
,
139
(
2002
).
34.
A.
Kokalj
and
T.
Matsushima
,
J. Chem. Phys.
122
,
034708
(
2005
).
35.
G.
Comsa
,
R.
David
, and
B. J.
Schumacher
,
Rev. Sci. Instrum.
52
,
789
(
1981
).
36.
Md. G.
Moula
, thesis,
Hokkaido University
,
2002
.
37.
T.
Matsushima
,
Y.
Ma
, and
O.
Nakagoe
,
e-J. Surf. Sci. Nanotechnol.
4
,
593
(
2006
).
38.
G.
Comsa
and
R.
David
,
Surf. Sci. Rep.
5
,
145
(
1985
).
39.
G.
Scoles
,
Atomic and Molecular Beam Methods
(
Oxford University Press
,
New York
,
1988
), Vol.
1
.
40.
T.
Matsushima
,
J. Phys. Chem. C
111
,
6422
(
2007
).
41.
S.
Haq
and
A.
Hodgson
,
Surf. Sci.
463
,
1
(
2000
).
42.
K.
Watanabe
,
A.
Kokalj
,
H.
Horino
,
I. I.
Rzeznicka
,
T.
Takahashi
,
N.
Nishi
, and
T.
Matsushima
,
Jpn. J. Appl. Phys., Part 1
45
,
2290
(
2006
).
43.
H.
Loirat
,
F.
Caralo
,
W.
Forst
, and
C.
Schoenenberger
,
J. Phys. Chem.
89
,
4586
(
1985
).
44.
W. A.
Brown
,
R.
Kose
, and
D. A.
King
,
Chem. Rev.
98
,
797
(
1998
).
45.
J. C.
Polanyi
,
Acc. Chem. Res.
5
,
161
(
1972
).
46.
T.
Matsushima
and
A.
Kokalj
,
Surf. Sci.
601
,
3996
(
2007
).
47.
V. P.
Zhdanov
,
O.
Nakagoe
, and
T.
Matsushima
,
Surf. Sci.
601
,
L49
(
2007
).
48.
J. J.
Weimer
,
J.
Loboda-Cackovic
, and
J. H.
Block
,
Surf. Sci.
316
,
123
(
1994
).
49.
M.
Sakurai
,
T.
Kondo
,
T.
Matsushima
, and
J.
Nakamura
(unpublished).
You do not currently have access to this content.