The barrier to the dissociative adsorption of methane on metal surfaces is generally large, and its height can vary with the motion of the lattice atoms. One fully quantum and three different mixed quantum-classical approaches are used to examine this reaction on Ni(111) and Pt(111) surfaces, using potential energy surfaces derived from density functional theory. The three approximate methods are benchmarked against the exact quantum studies, and two of them are shown to work reasonably well. The mixed models, which treat the lattice motion classically, are used to examine the lattice response during the reaction. It is found that the thermal motion of the lattice atoms strongly modifies the reactivity, but that their motion is not significantly perturbed. Based on these results, new models for methane reactions are proposed based on a sudden treatment of the lattice motion and shown to agree well with the exact results. In these new models, the reaction probability at different surface temperatures is computed from static surface reaction probabilities, allowing for a quantum calculation of the reaction probability without having to explicitly treat the motion of the heavy lattice atoms.

1.
J. D.
Beckerle
,
Q. Y.
Yang
,
A. D.
Johnson
, and
S. T.
Ceyer
,
J. Chem. Phys.
86
,
7236
(
1987
).
2.
M. B.
Lee
,
Q. Y.
Yang
, and
S. T.
Ceyer
,
J. Chem. Phys.
87
,
2724
(
1987
).
3.
J. D.
Beckerle
,
A. D.
Johnson
,
Q. Y.
Yang
, and
S. T.
Ceyer
,
J. Chem. Phys.
91
,
5756
(
1989
).
4.
J. D.
Beckerle
,
A. D.
Johnson
, and
S. T.
Ceyer
,
Phys. Rev. Lett.
62
,
685
(
1989
).
5.
R. R.
Smith
,
D. R.
Killelea
,
D. F.
DelSesto
, and
A. L.
Utz
,
Science
304
,
992
(
2004
).
6.
L. B. F.
Juurlink
,
R. R.
Smith
,
D. R.
Killelea
, and
A. L.
Utz
,
Phys. Rev. Lett.
94
,
208303
(
2005
).
7.
D. R.
Killelea
,
V. L.
Campbell
,
N. S.
Shuman
,
R. R.
Smith
, and
A. L.
Utz
,
J. Phys. Chem. C
113
,
20618
(
2009
).
8.
P. M.
Holmblad
,
J. H.
Larsen
, and
I.
Chorkendorff
,
J. Chem. Phys.
104
,
7289
(
1996
).
9.
C. -L.
Kao
and
R. J.
Madix
,
Surf. Sci.
557
,
215
(
2004
).
10.
R.
Bisson
,
M.
Sacchi
,
T. T.
Dang
,
B.
Yoder
,
P.
Maroni
, and
R. D.
Beck
,
J. Phys. Chem. A
111
,
12679
(
2007
).
11.
J.
Harris
,
J.
Simon
,
A. C.
Luntz
,
C. B.
Mullins
, and
C. T.
Rettner
,
Phys. Rev. Lett.
67
,
652
(
1991
).
12.
A. C.
Luntz
and
D. S.
Bethune
,
J. Chem. Phys.
90
,
1274
(
1989
).
13.
J. F.
Weaver
,
A. F.
Carlsson
, and
R. J.
Madix
,
Surf. Sci. Rep.
50
,
107
(
2003
).
14.
C. R.
Arumainayagam
,
M. C.
McMaster
,
G. R.
Schoofs
, and
R. J.
Madix
,
Surf. Sci.
222
,
213
(
1989
).
15.
A. F.
Carlsson
and
R. J.
Madix
,
Surf. Sci.
458
,
91
(
2000
).
16.
J.
Higgins
,
A.
Conjusteau
,
G.
Scoles
, and
S. L.
Bernasek
,
J. Chem. Phys.
114
,
5277
(
2001
).
17.
D. J.
Oakes
,
M. R. S.
McCoustra
, and
M. A.
Chesters
,
Faraday Discuss.
96
,
325
(
1993
).
18.
A. C.
Luntz
and
J.
Harris
,
Surf. Sci.
258
,
397
(
1991
).
19.
M.
Hand
and
J.
Harris
,
J. Chem. Phys.
92
,
7610
(
1990
).
20.
M. -N.
Carré
and
B.
Jackson
,
J. Chem. Phys.
108
,
3722
(
1998
).
21.
V. A.
Ukraintsev
and
I.
Harrison
,
J. Chem. Phys.
101
,
1564
(
1994
).
22.
A.
Bukoski
,
D.
Blumling
, and
I.
Harrison
,
J. Chem. Phys.
118
,
843
(
2003
).
23.
A.
Bukoski
and
I.
Harrison
,
J. Chem. Phys.
118
,
9762
(
2003
).
24.
H. L.
Abbott
,
A.
Bukoski
,
D. F.
Kavulak
, and
I.
Harrison
,
J. Chem. Phys.
119
,
6407
(
2003
).
25.
H. L.
Abbott
,
A.
Bukoski
, and
I.
Harrison
,
J. Chem. Phys.
121
,
3792
(
2004
).
26.
K. M.
DeWitt
,
L.
Valadez
,
H. L.
Abbott
,
K. W.
Kolasinski
, and
I.
Harrison
,
J. Phys. Chem. B
110
,
6705
(
2006
).
27.
S.
Nave
and
B.
Jackson
,
Phys. Rev. Lett.
98
,
173003
(
2007
).
28.
S.
Nave
and
B.
Jackson
,
J. Chem. Phys.
127
,
224702
(
2007
).
29.
S.
Nave
and
B.
Jackson
,
J. Chem. Phys.
130
,
054701
(
2009
).
30.
G.
Henkelman
and
H.
Jónsson
,
Phys. Rev. Lett.
86
,
664
(
2001
).
31.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
32.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
33.
Y.
Xiang
and
J. Z. H.
Zhang
,
J. Chem. Phys.
118
,
8954
(
2003
).
34.
A. K.
Tiwari
,
S.
Nave
, and
B.
Jackson
,
Phys. Rev. Lett.
103
,
253201
(
2009
).
35.
J.
Dai
and
J. Z. H.
Zhang
,
J. Phys. Chem.
100
,
6898
(
1996
).
36.
D. H.
Zhang
,
Q.
Wu
, and
J. Z. H.
Zhang
,
J. Chem. Phys.
102
,
124
(
1995
).
37.
R.
Heather
and
H.
Metiu
,
J. Chem. Phys.
86
,
5009
(
1987
).
38.
C.
Kalyanaraman
,
D.
Lemoine
, and
B.
Jackson
,
Phys. Chem. Chem. Phys.
1
,
1351
(
1999
).
39.
D.
Lemoine
,
J. Chem. Phys.
101
,
3936
(
1994
).
40.
D.
Lemoine
,
Chem. Phys. Lett.
224
,
483
(
1994
).
41.
D.
Lemoine
,
Comput. Phys. Commun.
99
,
297
(
1997
).
42.
D.
Lemoine
,
J. Chem. Phys.
101
,
10526
(
1994
).
43.
J. G.
Quattrucci
,
B.
Jackson
, and
D.
Lemoine
,
J. Chem. Phys.
118
,
2357
(
2003
).
44.
R. A.
Olsen
G. J.
Kroes
,
O. M.
Løvvik
, and
E. J.
Baerends
,
J. Chem. Phys.
107
,
10652
(
1997
).
45.
S.
Nave
,
A. K.
Tiwari
, and
B.
Jackson
,
J. Chem. Phys.
132
,
054705
(
2010
).
You do not currently have access to this content.