Using iterative evaluation of the real-time path integral expression, we calculate four-time correlation functions for one-dimensional systems coupled to model dissipative environments. We use these correlation functions to calculate response functions relevant to third order infrared or seventh order Raman experiments for harmonic, Morse, and quadratic-quartic potentials interacting with harmonic and two-level-system dissipative baths. Our calculations reveal the role of potential features (anharmonicity and eigenvalue spectrum), both on short and long time scales, on the response function. Further, thermal excitation causes dramatic changes in the appearance of the response function, introducing symmetry with respect to the main diagonal. Finally, coupling to harmonic dissipative baths leads to decay of the response function (primarily along the τ3 direction) and a broadening of the peaks in its Fourier transform. At high temperatures two-level-system baths are less efficient in destroying coherence than harmonic baths of similar parameters.

1.
S.
Mukamel
,
Annu. Rev. Phys. Chem.
41
,
647
(
1990
).
2.
J. T.
Fourkas
,
Advances in Chemical Physics
(
Wiley
,
New York
,
2001
), Vol.
117
, p.
235
.
3.
J. T.
Fourkas
,
Annu. Rev. Phys. Chem.
53
,
17
(
2002
).
4.
O.
Golonzka
,
M.
Khalil
,
N.
Demirdoven
, and
A.
Tokmakoff
,
ACS Symp. Ser.
820
,
169
(
2002
).
5.
M. D.
Fayer
,
Annu. Rev. Phys. Chem.
60
,
21
(
2009
).
6.
R. M.
Hochstrasser
,
Adv. Chem. Phys.
132
,
1
(
2006
).
7.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
8.
Y.
Tanimura
and
S.
Mukamel
,
J. Chem. Phys.
99
,
9496
(
1993
).
9.
J.
Wu
,
J. Chem. Phys.
115
,
5381
(
2001
).
10.
M.
Kryvohuz
and
J.
Cao
,
J. Chem. Phys.
122
,
024109
(
2005
).
11.
R.
Akiyama
and
R. F.
Loring
,
J. Chem. Phys.
116
,
4655
(
2002
).
12.
R.
Akiyama
and
R. F.
Loring
,
J. Phys. Chem.
107
,
8024
(
2003
).
13.
W. G.
Noid
,
G. S.
Ezra
, and
G. F.
Loring
,
J. Chem. Phys.
119
,
1003
(
2003
).
14.
W. G.
Noid
,
G. S.
Ezra
, and
G. F.
Loring
,
J. Chem. Phys.
120
,
1491
(
2004
).
15.
S. M.
Gruenbaum
and
R. F.
Loring
,
J. Chem. Phys.
129
,
124510
(
2008
).
16.
Y.
Tanimura
and
Y.
Maruyama
,
J. Chem. Phys.
107
,
1779
(
1997
).
17.
T.
Steffen
and
Y.
Tanimura
,
J. Phys. Soc. Jpn.
69
,
3115
(
2000
).
18.
O.
Kühn
and
Y.
Tanimura
,
J. Chem. Phys.
119
,
2155
(
2003
).
19.
T.
Kato
and
Y.
Tanimura
,
J. Chem. Phys.
120
,
260
(
2004
).
20.
A.
Ishizaki
and
Y.
Tanimura
,
J. Phys. Soc. Jpn.
74
,
3131
(
2005
).
21.
A.
Ishizaki
and
Y.
Tanimura
,
J. Chem. Phys.
125
,
084501
(
2006
).
22.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4600
(
1995
).
23.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4611
(
1995
).
24.
N.
Makri
,
J. Math. Phys.
36
,
2430
(
1995
).
25.
E.
Sim
and
N.
Makri
,
Comput. Phys. Commun.
99
,
335
(
1997
).
26.
N.
Makri
,
J. Chem. Phys.
111
,
6164
(
1999
).
27.
J.
Shao
and
N.
Makri
,
Chem. Phys.
268
,
1
(
2001
).
28.
J.
Shao
and
N.
Makri
,
J. Chem. Phys.
116
,
507
(
2002
).
29.
N.
Makri
,
Chem. Phys. Lett.
193
,
435
(
1992
).
30.
M.
Topaler
and
N.
Makri
,
Chem. Phys. Lett.
210
,
448
(
1993
).
31.
D. E.
Makarov
and
N.
Makri
,
Chem. Phys. Lett.
221
,
482
(
1994
).
32.
N.
Makri
and
W. H.
Miller
,
J. Chem. Phys.
89
,
2170
(
1988
).
33.
J.
Echave
and
D. C.
Clary
,
J. Chem. Phys.
190
,
225
(
1992
).
34.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
,
New York
,
1965
).
35.
R. P.
Feynman
and
J. F. L.
Vernon
,
Ann. Phys.
24
,
118
(
1963
).
36.
J. D.
Doll
and
D. L.
Freeman
,
Adv. Chem. Phys.
73
,
289
(
1988
).
37.
N.
Makri
,
Comput. Phys. Commun.
63
,
389
(
1991
).
38.
N.
Makri
,
Annu. Rev. Phys. Chem.
50
,
167
(
1999
).
39.
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P. A.
Fisher
,
A.
Garg
, and
M.
Zwerger
,
Rev. Mod. Phys.
59
,
1
(
1987
).
40.
J. N.
Onuchic
and
P. G.
Wolynes
,
J. Phys. Chem.
92
,
6495
(
1988
).
41.
R. A.
Marcus
,
Angew. Chem., Int. Ed. Engl.
32
,
1111
(
1993
).
42.
N.
Makri
,
J. Phys. Chem.
103
,
2823
(
1999
).
43.
R.
Zwanzig
,
J. Stat. Phys.
9
,
215
(
1973
).
44.
A. O.
Caldeira
,
A. H.
Castro Neto
, and
T.
Oliveira de Carvalho
,
Phys. Rev. B
48
,
13974
(
1993
).
45.
Y.
Tanimura
,
AIP Conf. Proc.
503
,
144
(
2000
).
46.
T.
Steffen
and
Y.
Tanimura
,
J. Phys. Soc. Jpn.
76
,
078001
(
2007
).
47.
M.
Kryvohuz
and
J.
Cao
,
Phys. Rev. Lett.
96
,
030403
(
2006
).
48.
E.
Jezek
and
N.
Makri
,
J. Phys. Chem.
105
,
2851
(
2001
).
49.
N. J.
Wright
and
N.
Makri
,
J. Chem. Phys.
119
,
1634
(
2003
).
50.
J.
Chen
and
N.
Makri
,
Mol. Phys.
106
,
443
(
2008
).
51.
M.
Kryvohuz
and
J.
Cao
,
Phys. Rev. Lett.
95
,
180405
(
2005
).
52.
J.
Leegwater
and
S.
Mukamel
,
J. Chem. Phys.
102
,
2365
(
1995
).
53.
W. G.
Noid
,
G. S.
Ezra
, and
G. F.
Loring
,
J. Phys. Chem.
108
,
6536
(
2004
).
54.
S.
Mukamel
,
V.
Khidekel
, and
V.
Chernyak
,
Phys. Rev. E
53
,
R1
(
1996
).
55.
G.
Ilk
and
N.
Makri
,
J. Chem. Phys.
101
,
6708
(
1994
).
56.
K.
Forsythe
and
N.
Makri
,
Phys. Rev. B
60
,
972
(
1999
).
You do not currently have access to this content.