Gelation in colloidal suspensions is mostly induced by attractive interparticle potentials. Beside these interactions, the mechanical properties of the gel are influenced by morphological aspects like fractality. In suspensions of liquid crystal (LC) and polymeric colloids, solvent-particle interactions dominate and can be changed when the mesogen undergoes phase transition from isotropic to nematic. In case of poly(methyl methacrylate) colloids and 4-pentyl-4-cyanobiphenyl (5CB), cooling through the isotropic-nematic phase transition results in a cellular network. Such network formation is accompanied by a strong evolution of the mechanical properties. Shear moduli reach values up to 106Pa for temperatures of 15 K below the transition. Until now, the mechanical response of the gel was attributed to the elastic interactions of the LC with the colloids. However, the dynamic viscoelastic stiffening with decreasing temperature could not be explained satisfactorily. We used a homemade piezorheometer to measure the complex shear modulus of the sample in parallel plate geometry. Since the applied strains are very small, only the linear viscoelastic regime was tested. This limit guarantees a high degree of reproducibility. We gained insight into the underlying processes by measuring the frequency response for the whole cooling process. Temperature and frequency showed a strong correlation allowing for a superposition of the frequency spectra to form a single master curve similar to time-temperature-superposition. We propose that this superposition behavior is connected to the thermodynamics of the isotropic-nematic phase transition of 5CB located in the network walls. Additional experimental observations, such as hysteresis effects, support this assumption. Morphological aspects were found to be of minor relevance.

1.
M. E.
Cates
,
Ann. Henri Poincare
4
,
647
(
2008
).
2.
H.
Tanaka
and
T.
Araki
,
Europhys. Lett.
79
,
58003
(
2007
).
3.
A. D.
Dinsmore
and
D. A.
Weitz
,
J. Phys.: Condens. Matter
14
,
7581
(
2002
).
4.
L.
Cipelletti
,
S.
Manley
,
R. C.
Ball
, and
D. A.
Weitz
,
Phys. Rev. Lett.
84
,
2275
(
2000
).
5.
S. M.
Fielding
,
P.
Sollich
, and
M. E.
Cates
,
J. Rheol.
44
,
323
(
2000
).
6.
S.
Jabbari-Farouji
,
M.
Atakhorrami
,
D.
Mizuno
,
E.
Eiser
,
G. H.
Wegdam
,
F. C.
MacKintosh
,
D.
Bonn
, and
C. F.
Schmidt
,
Phys. Rev. E
78
,
061402
(
2008
).
7.
S. W.
Kamp
and
M. L.
Kilfoil
,
Soft Matter
5
,
2438
(
2009
).
8.
D. J.
Pine
,
D. A.
Weitz
,
P. M.
Chaikin
, and
E.
Herbolzheimer
,
Phys. Rev. Lett.
60
,
1134
(
1988
).
9.
F.
Scheffold
,
S. E.
Skipetrov
,
S.
Romer
, and
P.
Schurtenberger
,
Phys. Rev. E
63
,
061404
(
2001
).
10.
S.
Romer
,
F.
Scheffold
, and
P.
Schurtenberger
,
Phys. Rev. Lett.
85
,
4980
(
2000
).
11.
J.
Bergenholtz
,
W. C. K.
Poon
, and
M.
Fuchs
,
Langmuir
19
,
4493
(
2003
).
12.
A. M.
Puertas
,
M.
Fuchs
, and
M. E.
Cates
,
Phys. Rev. Lett.
88
,
098301
(
2002
).
13.
P. J.
Lu
,
E.
Zaccarelli
,
F.
Ciulla
,
A. B.
Schofield
,
F.
Sciortino
, and
D. A.
Weitz
,
Nature (London)
453
,
499
(
2008
).
14.
S. P.
Meeker
,
W. C. K.
Poon
,
J.
Crain
, and
E. M.
Terentjev
,
Phys. Rev. E
61
,
R6083
(
2000
).
15.
P. G.
Petrov
and
E. M.
Terentjev
,
Langmuir
17
,
2942
(
2001
).
16.
E. M.
Terentjev
,
Phys. Rev. E
51
,
1330
(
1995
).
17.
V. J.
Anderson
and
E. M.
Terentjev
,
Eur. Phys. J. E
4
,
21
(
2001
).
18.
D.
Vollmer
,
G.
Hinze
,
B.
Ullrich
,
W. C. K.
Poon
,
M. E.
Cates
, and
A. B.
Schofield
,
Langmuir
21
,
4921
(
2005
).
19.
R.
Bartolino
and
G.
Durand
,
Phys. Rev. Lett.
39
,
1346
(
1977
).
20.
M.
Cagnon
and
G.
Durand
,
Phys. Rev. Lett.
45
,
1418
(
1980
).
21.
Y.
Yamamoto
,
H.
Nakamura
, and
K.
Okano
,
Jpn. J. Appl. Phys., Part 1
26
,
29
(
1986
).
22.
K.
Okano
and
J.
Yamamoto
,
Jpn. J. Appl. Phys., Part 1
30
,
754
(
1990
).
23.
P.
Martinoty
,
J. L.
Gallani
, and
D.
Collin
,
Phys. Rev. Lett.
81
,
144
(
1998
).
24.
P.
Martinoty
and
D.
Colin
, Patent Application No. EP 1779087A1 (
2006
) (pending).
25.
G. K.
Auernhammer
,
D.
Collin
, and
P.
Martinoty
,
J. Chem. Phys.
124
,
204907
(
2006
).
26.
D.
Collin
,
G. K.
Auernhammer
,
O.
Gavat
,
P.
Martinoty
, and
H. R.
Brand
,
Macromol. Rapid Commun.
24
,
737
(
2003
).
27.
Ch.
Clasen
,
B. P.
Gearing
, and
G. H.
McKinley
,
J. Rheol.
50
,
883
(
2006
).
28.
N.
Willenbacher
and
C.
Oelschlaeger
,
Curr. Opin. Colloid Interface Sci.
12
,
43
(
2007
).
29.
J.
Cleaver
and
W. C. K.
Poon
,
J. Phys.: Condens. Matter
16
,
S1901
(
2004
).
30.
J. A.
Cleaver
,
D.
Vollmer
,
J.
Crain
, and
W.
Poon
,
Mol. Cryst. Liq. Cryst.
409
,
59
(
2004
).
31.
J. L.
West
,
A.
Glushchenko
,
G.
Liao
,
Y.
Reznikov
,
D.
Andrienko
, and
M. P.
Allen
,
Phys. Rev. E
66
,
012702
(
2002
).
32.
M. F.
Ashby
and
R. F.
Mehl Medalist
,
Metall. Mater. Trans. A
14
,
1755
(
1983
).
33.
V. J.
Anderson
,
E. M.
Terentjev
,
S. P.
Meeker
,
J.
Crain
, and
W. C. K.
Poon
,
Eur. Phys. J. E
4
,
11
(
2001
).
34.
G. A.
Oweimreen
and
D. E.
Martire
,
J. Chem. Phys.
72
,
2500
(
1980
).
35.
S. M.
Klein
,
V. N.
Manoharan
,
D. J.
Pine
, and
F. F.
Lange
,
Colloid Polym. Sci.
282
,
7
(
2003
).
36.
D. J.
Cebula
,
J. W.
Goodwin
,
R. H.
Ottewill
,
G.
Jenkin
, and
J.
Tabony
,
Colloid Polym. Sci.
261
,
555
(
1983
).
37.
B.
Ullrich
,
E.
Ilska
,
N.
Hoehn
, and
D.
Vollmer
,
Prog. Colloid Polym. Sci.
133
,
142
(
2006
).
38.
B.
Ullrich
,
G. K.
Auernhammer
,
E. M.
Sam
, and
D.
Vollmer
,
Colloids Surf., A
354
,
298
(
2010
).
39.
J. D.
Ferry
,
Viscoelastic Properties of Polymers
, 3rd ed. (
Wiley
,
New York
,
1980
).
40.
G.
Bosma
,
C.
Pathmamanoharan
,
E. H. A.
de Hoog
,
W. K.
Kegel
,
A.
van Blaaderen
, and
H. N. W.
Lekkerkerker
,
J. Colloid Interface Sci.
245
,
292
(
2002
).
41.
K.
Linderstrøm-Lang
,
Nature (London)
139
,
713
(
1937
).
42.
S.
Pestov
,
Advanced Materials and Technologies
,
Landolt-Börnstein
, Group VIII (
Springer-Verlag
,
Berlin
,
2006
), pp.
24
65
.
43.
D.
Vollmer
,
G.
Hinze
,
W. C. K.
Poon
,
J.
Cleaver
, and
M. E.
Cates
,
J. Phys.: Condens. Matter
16
,
L227
(
2004
).
44.
R.
Lakes
,
Nature (London)
361
,
511
(
1993
).
45.
L. J.
Gibson
and
M. F.
Ashby
,
Cellular Solids: Structure and Properties
, 2nd ed. (
Cambridge University Press
,
Cambridge, England
,
1999
).
46.
R.
Höhler
and
S.
Cohen-Addad
,
J. Phys.: Condens. Matter
17
,
R1041
(
2005
).
47.
For every data point in the temperature data of Fig. 3 a complete frequency sweep with 16 points in the range from 0.3 to 300 Hz was recorded. In every sweep single frequencies f are set successively and the mechanical response is averaged over ten periods. So, the actual measurement per each frequency takes approximately 10/f and for the complete frequency sweep about 6 min. At constant cooling rate of 0.1 K/min this results in a temperature difference between the first and last data points in the frequency sweep of about 0.6°K. To correct for this discrepancy the shear modulus at a fixed temperature and frequency is extrapolated from three consecutive frequency sweeps.
48.
A. V.
Tobolsky
and
R. D.
Andrews
,
J. Chem. Phys.
13
,
3
(
1945
).
49.
A. V.
Tobolsky
,
J. Appl. Phys.
27
,
673
(
1956
).
50.
J. Y.
Cavaille
and
J.
Corinne Jourdan
,
J. Polym. Sci.
25
,
1099
(
1987
).
51.
H.
Tanaka
,
J. Phys.: Condens. Matter
12
,
R207
(
2000
).
52.
M. C. W.
van Boxtel
,
C. J. J.
Perez
,
M.
Wübbenhorst
,
J.
van Turnhout
,
W. M.
Bastiaansent
, and
D. J.
Broer
,
Liq. Cryst.
30
,
235
(
2003
).
53.
H.
Nakamura
,
S. P.
Meeker
,
Y.
Taira
,
W. C. K.
Poon
, and
J.
Crain
,
Mol. Cryst. Liq. Cryst.
368
,
167
(
2001
).
You do not currently have access to this content.